Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 134708 by bramlexs22 last updated on 06/Mar/21

D = ∫_0 ^( π/2) sin^4 x cos^5 x dx

$$\mathscr{D}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\:\mathrm{cos}\:^{\mathrm{5}} \mathrm{x}\:\mathrm{dx}\: \\ $$

Answered by john_santu last updated on 06/Mar/21

D = ∫_0 ^( π/2) sin^4 x(1−sin^2 x)^2  cos x dx  let u= sin x ,  determinant (((u=1(upper limit))),((u=0 (lower limit))))  D = ∫_0 ^( 1) u^4 (u^4 −2u^2 +1) du   D = ∫_0 ^( 1) (u^8 −2u^6 +u^4 )du  D = [(u^9 /9)−((2u^7 )/7) +(u^5 /5) ]_0 ^1   D = (1/9)−(2/7)+(1/5) = ((35−90+63)/(315))  D = (8/(315)) •

$$\mathscr{D}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{4}} {x}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:\mathrm{cos}\:{x}\:{dx} \\ $$$${let}\:{u}=\:\mathrm{sin}\:{x}\:,\:\begin{array}{|c|c|}{{u}=\mathrm{1}\left({upper}\:{limit}\right)}\\{{u}=\mathrm{0}\:\left({lower}\:{limit}\right)}\\\hline\end{array} \\ $$$$\mathscr{D}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {u}^{\mathrm{4}} \left({u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}\right)\:{du}\: \\ $$$$\mathscr{D}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({u}^{\mathrm{8}} −\mathrm{2}{u}^{\mathrm{6}} +{u}^{\mathrm{4}} \right){du} \\ $$$$\mathscr{D}\:=\:\left[\frac{{u}^{\mathrm{9}} }{\mathrm{9}}−\frac{\mathrm{2}{u}^{\mathrm{7}} }{\mathrm{7}}\:+\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathscr{D}\:=\:\frac{\mathrm{1}}{\mathrm{9}}−\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{5}}\:=\:\frac{\mathrm{35}−\mathrm{90}+\mathrm{63}}{\mathrm{315}} \\ $$$$\mathscr{D}\:=\:\frac{\mathrm{8}}{\mathrm{315}}\:\bullet \\ $$

Answered by Dwaipayan Shikari last updated on 06/Mar/21

∫_0 ^(π/2) sin^4 x cos^5 x dx  ,  Generally ∫_0 ^(π/2) sin^m x cos^n x dx=((Γ(((m+1)/2))Γ(((n+1)/2)))/(2Γ(((m+n)/2)+1)))  =((Γ((5/2))Γ(3))/(2Γ(((11)/2))))=(((3/4)(√π).2)/(2.(9/2).(7/2).(5/2).(3/4)(√π)))=(8/(315))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{4}} {x}\:{cos}^{\mathrm{5}} {x}\:{dx}\:\:,\:\:{Generally}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{m}} {x}\:{cos}^{{n}} {x}\:{dx}=\frac{\Gamma\left(\frac{{m}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{m}+{n}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\Gamma\left(\mathrm{3}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{11}}{\mathrm{2}}\right)}=\frac{\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\pi}.\mathrm{2}}{\mathrm{2}.\frac{\mathrm{9}}{\mathrm{2}}.\frac{\mathrm{7}}{\mathrm{2}}.\frac{\mathrm{5}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\pi}}=\frac{\mathrm{8}}{\mathrm{315}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com