Question Number 209162 by dr1001sa last updated on 02/Jul/24 | ||
$$ \\ $$Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD? | ||
Answered by mr W last updated on 02/Jul/24 | ||
Commented by mr W last updated on 03/Jul/24 | ||
$$\frac{{y}}{\mathrm{4}}=\frac{{x}}{{z}}\:\Rightarrow{yz}=\mathrm{4}{x} \\ $$$$\mathrm{6}^{\mathrm{2}} {y}+\mathrm{6}^{\mathrm{2}} {z}=\left({y}+{z}\right)\left(\mathrm{4}^{\mathrm{2}} +{yz}\right) \\ $$$$\mathrm{6}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{4}{x}\:\Rightarrow{x}=\mathrm{5}\: \\ $$$${BD}=\mathrm{4}+\mathrm{5}=\mathrm{9}\:\checkmark \\ $$ | ||
Commented by efronzo1 last updated on 03/Jul/24 | ||
$$\:\:\left(\mathrm{i}\right)\:\:\underline{\vdots}\underbrace{\mathfrak{D}\spadesuit\boldsymbol{\mathrm{Z}}\lessapprox\boldsymbol{\nu}} \\ $$ | ||
Commented by dr1001sa last updated on 03/Jul/24 | ||
$${which}\:{theorem}\:{u}\:{use} \\ $$ | ||
Commented by mr W last updated on 03/Jul/24 | ||
Commented by mr W last updated on 03/Jul/24 | ||
$$\mathrm{cos}\:\theta=\frac{{n}^{\mathrm{2}} +{d}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{nd}} \\ $$$$\mathrm{cos}\:\left(\pi−\theta\right)=\frac{{m}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{md}}=−\mathrm{cos}\:\theta \\ $$$$\frac{{m}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{md}}=−\frac{{n}^{\mathrm{2}} +{d}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{nd}} \\ $$$$\Rightarrow\:{mb}^{\mathrm{2}} +{na}^{\mathrm{2}} =\left({m}+{n}\right)\left({d}^{\mathrm{2}} +{mn}\right) \\ $$$${this}\:{is}\:{also}\:{called}\:{Stewart}'{s}\:{theorem}. \\ $$ | ||
Commented by dr1001sa last updated on 03/Jul/24 | ||
$${thank}\:{you}\:{so}\:{much} \\ $$ | ||
Answered by A5T last updated on 02/Jul/24 | ||
Commented by A5T last updated on 02/Jul/24 | ||
$${Consider}\:{circle}\:{centered}\:{at}\:{B}\:{with}\:{radius}\:\mathrm{4} \\ $$$$\Rightarrow{AE}×{AF}={AS}×{AG}={AS}×{SC}={BS}×{SD} \\ $$$${AE}={AB}−{BE}=\mathrm{6}−\mathrm{4}=\mathrm{2};{AF}={AE}+\mathrm{2}×\mathrm{4}=\mathrm{10} \\ $$$$\Rightarrow{AS}×{AG}=\mathrm{2}×\mathrm{10}=\mathrm{20}={BS}×{SD}=\mathrm{4}×{SD} \\ $$$$\Rightarrow{SD}=\frac{\mathrm{20}}{\mathrm{4}}=\mathrm{5}\Rightarrow{BD}={BS}+{SD}=\mathrm{5}+\mathrm{4}=\mathrm{9} \\ $$ | ||