Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113865 by Ar Brandon last updated on 15/Sep/20

Consider the series I_n =∫_1 ^e x(lnx)^n dx and I_0 =∫_1 ^e xdx  Which of the following is true ?  a\ 0≤I_n ≤(e^2 /(n+2))    b\1≤I_n ≤(e^2 /(n+1))  c\I_n  is negative

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{x}\left(\mathrm{lnx}\right)^{\mathrm{n}} \mathrm{dx}\:\mathrm{and}\:\mathrm{I}_{\mathrm{0}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{xdx} \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:? \\ $$$$\mathrm{a}\backslash\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{2}}\:\:\:\:\mathrm{b}\backslash\mathrm{1}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{1}}\:\:\mathrm{c}\backslash\mathrm{I}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{negative} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com