Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 1395 by Rasheed Soomro last updated on 28/Jul/15

          Consider quadrilateral ABCD  same as in Q 1378 with   same conditions/restrictions (Pl  refer  the Question again).            • What could be possible minimum and maximum area  of the quadrilateral?             •When qusdrilateral has minimum area what is the value/s  of m∠A? Similarly what is value/s  of m∠A in case of  maximum area?

$$\:\:\:\:\:\:\:\:\:\:\mathrm{C}{onsider}\:\boldsymbol{\mathrm{quadrilateral}}\:\boldsymbol{\mathrm{ABCD}}\:\:{same}\:{as}\:{in}\:{Q}\:\mathrm{1378}\:{with}\: \\ $$$${same}\:{conditions}/{restrictions}\:\left({Pl}\:\:{refer}\:\:{the}\:{Question}\:{again}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\bullet\:{What}\:{could}\:{be}\:{possible}\:\boldsymbol{\mathrm{minimum}}\:{and}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}} \\ $$$${of}\:{the}\:{quadrilateral}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\bullet{When}\:{qusdrilateral}\:{has}\:\boldsymbol{\mathrm{minimum}}\:\boldsymbol{\mathrm{area}}\:{what}\:{is}\:{the}\:{value}/{s} \\ $$$${of}\:\boldsymbol{{m}}\angle\boldsymbol{\mathrm{A}}?\:{Similarly}\:{what}\:{is}\:{value}/{s}\:\:{of}\:\boldsymbol{{m}}\angle\boldsymbol{\mathrm{A}}\:{in}\:{case}\:{of} \\ $$$$\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}? \\ $$$$ \\ $$

Commented by prakash jain last updated on 28/Jul/15

minimum area →0  maximum area →(((a+b+c+d)/4))^2   m∠A for max area →(π/2)

$$\mathrm{minimum}\:\mathrm{area}\:\rightarrow\mathrm{0} \\ $$$$\mathrm{maximum}\:\mathrm{area}\:\rightarrow\left(\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$${m}\angle{A}\:\mathrm{for}\:\mathrm{max}\:\mathrm{area}\:\rightarrow\frac{\pi}{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 29/Jul/15

In order to learn I put my questions (raised in my mind)  before you. I want to be satisfied, so Please reply.   maximum area→(((a+b+c+d)/4))^2             •You have used symbol ′→′ in above.Does this mean ′ tends to ′ ?  •Could we replace it with ′=′ equally ?  •Does the above expression can be used as a formula for   the area a quadrilateral having one angle of (𝛑/2) rad. If yes  then it should be used for area of rectangle of x  by  y .  But above formula gives the area (((x+y)/2)) instead of xy!  In other words :  Being  quadrilateral maximum area of parallelogram is  area of rectangle. If the dimensions of ∥gram are  x and y then maximum area should be xy .But the above   formula gives the result ((x+y)/2) !

$${In}\:{order}\:{to}\:{learn}\:{I}\:{put}\:{my}\:{questions}\:\left({raised}\:{in}\:{my}\:{mind}\right) \\ $$$${before}\:{you}.\:{I}\:{want}\:{to}\:{be}\:{satisfied},\:{so}\:\boldsymbol{\mathrm{Please}}\:\boldsymbol{\mathrm{reply}}. \\ $$$$\:{maximum}\:{area}\rightarrow\left(\frac{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}}{\mathrm{4}}\right)^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\: \\ $$$$\bullet{You}\:{have}\:{used}\:{symbol}\:'\rightarrow'\:{in}\:{above}.{Does}\:{this}\:{mean}\:'\:{tends}\:{to}\:'\:? \\ $$$$\bullet{Could}\:{we}\:{replace}\:{it}\:{with}\:'='\:{equally}\:? \\ $$$$\bullet{Does}\:{the}\:{above}\:{expression}\:{can}\:{be}\:{used}\:{as}\:{a}\:{formula}\:{for}\: \\ $$$${the}\:{area}\:{a}\:\boldsymbol{\mathrm{quadrilateral}}\:\boldsymbol{\mathrm{having}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{of}}\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\:\boldsymbol{\mathrm{rad}}.\:{If}\:{yes} \\ $$$${then}\:{it}\:{should}\:{be}\:{used}\:{for}\:{area}\:{of}\:{rectangle}\:{of}\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{by}}\:\:\boldsymbol{\mathrm{y}}\:. \\ $$$${But}\:{above}\:{formula}\:{gives}\:{the}\:{area}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right)\:{instead}\:{of}\:{xy}! \\ $$$${In}\:{other}\:{words}\:: \\ $$$${Being}\:\:{quadrilateral}\:{maximum}\:{area}\:{of}\:{parallelogram}\:{is} \\ $$$${area}\:{of}\:{rectangle}.\:{If}\:{the}\:{dimensions}\:{of}\:\parallel{gram}\:{are} \\ $$$${x}\:{and}\:{y}\:{then}\:{maximum}\:{area}\:{should}\:{be}\:{xy}\:.{But}\:{the}\:{above}\: \\ $$$${formula}\:{gives}\:{the}\:{result}\:\frac{{x}+{y}}{\mathrm{2}}\:! \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 29/Jul/15

I think as area → 0, m∠A → 0  or 𝛑

$${I}\:{think}\:{as}\:\boldsymbol{{area}}\:\rightarrow\:\mathrm{0},\:\boldsymbol{{m}}\angle\boldsymbol{\mathrm{A}}\:\rightarrow\:\mathrm{0}\:\:{or}\:\boldsymbol{\pi} \\ $$

Commented by prakash jain last updated on 29/Jul/15

You can have area →0 with two opposite  side a and c, a≠b near 0.

$$\mathrm{You}\:\mathrm{can}\:\mathrm{have}\:\mathrm{area}\:\rightarrow\mathrm{0}\:\mathrm{with}\:\mathrm{two}\:\mathrm{opposite} \\ $$$$\mathrm{side}\:\mathrm{a}\:\mathrm{and}\:\mathrm{c},\:\mathrm{a}\neq\mathrm{b}\:\mathrm{near}\:\mathrm{0}. \\ $$

Commented by Rasheed Ahmad last updated on 31/Jul/15

Maximum area of parllelogram  with dimensions x and y is the  area of rectange with same  dimensions that is xy if I am right.  But your formula (((a+b+c+d)/4) )^2   gives (((x+y)/2))^2 .Please explain   as I want to learn from you.

$${Maximum}\:{area}\:{of}\:{parllelogram} \\ $$$${with}\:{dimensions}\:{x}\:{and}\:{y}\:{is}\:{the} \\ $$$${area}\:{of}\:{rectange}\:{with}\:{same} \\ $$$${dimensions}\:{that}\:{is}\:{xy}\:{if}\:{I}\:{am}\:{right}. \\ $$$${But}\:{your}\:{formula}\:\left(\frac{{a}+{b}+{c}+{d}}{\mathrm{4}}\:\right)^{\mathrm{2}} \\ $$$${gives}\:\left(\frac{{x}+{y}}{\mathrm{2}}\right)^{\mathrm{2}} .{Please}\:{explain}\: \\ $$$${as}\:{I}\:{want}\:{to}\:{learn}\:{from}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com