Question Number 53063 by Tristan last updated on 16/Jan/19 | ||
$$\mathrm{Comment}\:\mathrm{resoudre}\:\mathrm{cette}\:\mathrm{eqution}\: \\ $$$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$ | ||
Answered by MJS last updated on 18/Jan/19 | ||
$$\left(\mathrm{1}\right) \\ $$$${y}=\pm\sqrt{\mathrm{3}×\mathrm{2}^{{x}} +\mathrm{1}} \\ $$$$\Rightarrow\:{x}\in\mathbb{R} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{2}^{{x}} =\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}} \\ $$$${x}\mathrm{ln}\:\mathrm{2}\:=\mathrm{ln}\:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{ln}\:\mathrm{3} \\ $$$${x}=\mathrm{log}_{\mathrm{2}} \:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{log}_{\mathrm{2}} \:\mathrm{3} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} >\mathrm{1}\:\Rightarrow\:{y}\in\mathbb{R}\backslash\left[−\mathrm{1};\mathrm{1}\right] \\ $$ | ||