Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 53063 by Tristan last updated on 16/Jan/19

Comment resoudre cette eqution   2^x ×3−y^2 =−1

$$\mathrm{Comment}\:\mathrm{resoudre}\:\mathrm{cette}\:\mathrm{eqution}\: \\ $$$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$

Answered by MJS last updated on 18/Jan/19

(1)  y=±(√(3×2^x +1))  ⇒ x∈R  (2)  2^x =((y^2 −1)/3)  xln 2 =ln (y^2 −1) −ln 3  x=log_2  (y^2 −1) −log_2  3  ⇒ y^2 >1 ⇒ y∈R\[−1;1]

$$\left(\mathrm{1}\right) \\ $$$${y}=\pm\sqrt{\mathrm{3}×\mathrm{2}^{{x}} +\mathrm{1}} \\ $$$$\Rightarrow\:{x}\in\mathbb{R} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{2}^{{x}} =\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}} \\ $$$${x}\mathrm{ln}\:\mathrm{2}\:=\mathrm{ln}\:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{ln}\:\mathrm{3} \\ $$$${x}=\mathrm{log}_{\mathrm{2}} \:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{log}_{\mathrm{2}} \:\mathrm{3} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} >\mathrm{1}\:\Rightarrow\:{y}\in\mathbb{R}\backslash\left[−\mathrm{1};\mathrm{1}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com