Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48443 by rahul 19 last updated on 24/Nov/18

Coefficient of x^4  in (2−x+3x^2 )^6 =?

$${Coefficient}\:{of}\:{x}^{\mathrm{4}} \:{in}\:\left(\mathrm{2}−{x}+\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{6}} =? \\ $$

Commented by rahul 19 last updated on 24/Nov/18

Do by multinomial expansions....

$${Do}\:{by}\:{multinomial}\:{expansions}.... \\ $$

Commented by Meritguide1234 last updated on 24/Nov/18

rahul your post are nice post more questions like this

$${rahul}\:{your}\:{post}\:{are}\:{nice}\:{post}\:{more}\:{questions}\:{like}\:{this} \\ $$

Commented by rahul 19 last updated on 24/Nov/18

Sure sir!  I′ll post tomorrow...

$${Sure}\:{sir}! \\ $$$${I}'{ll}\:{post}\:{tomorrow}... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18

((6!)/(a!b!c!))(2)^a (−x)^b (3x^2 )^c   =((6!)/(a!b!c!))(2)^a (3)^c (−1)^b (x)^(b+2c)   a+b+c=6  b+2c=4  b=0   c=2  so a=4  b=2   c=1    a=3  b=4    c=0    a=2  so required coefficient is  [((6!)/(4!0!2!))×(2)^4 (3)^2 (−1)^0 +((6!)/(3!2!1!))×(2)^3 (3)^1 (−1)^2 +    ((6!)/(2!4!0!))×(2)^2 (3)^0 (−1)^4 ]   pls check and calculate...  [15×16×9+60×8×3+15×4  =      2160     +1440+60  =3660

$$\frac{\mathrm{6}!}{{a}!{b}!{c}!}\left(\mathrm{2}\right)^{{a}} \left(−{x}\right)^{{b}} \left(\mathrm{3}{x}^{\mathrm{2}} \right)^{{c}} \\ $$$$=\frac{\mathrm{6}!}{{a}!{b}!{c}!}\left(\mathrm{2}\right)^{{a}} \left(\mathrm{3}\right)^{{c}} \left(−\mathrm{1}\right)^{{b}} \left({x}\right)^{{b}+\mathrm{2}{c}} \\ $$$${a}+{b}+{c}=\mathrm{6} \\ $$$${b}+\mathrm{2}{c}=\mathrm{4} \\ $$$${b}=\mathrm{0}\:\:\:{c}=\mathrm{2}\:\:{so}\:{a}=\mathrm{4} \\ $$$${b}=\mathrm{2}\:\:\:{c}=\mathrm{1}\:\:\:\:{a}=\mathrm{3} \\ $$$${b}=\mathrm{4}\:\:\:\:{c}=\mathrm{0}\:\:\:\:{a}=\mathrm{2} \\ $$$${so}\:{required}\:{coefficient}\:{is} \\ $$$$\left[\frac{\mathrm{6}!}{\mathrm{4}!\mathrm{0}!\mathrm{2}!}×\left(\mathrm{2}\right)^{\mathrm{4}} \left(\mathrm{3}\right)^{\mathrm{2}} \left(−\mathrm{1}\right)^{\mathrm{0}} +\frac{\mathrm{6}!}{\mathrm{3}!\mathrm{2}!\mathrm{1}!}×\left(\mathrm{2}\right)^{\mathrm{3}} \left(\mathrm{3}\right)^{\mathrm{1}} \left(−\mathrm{1}\right)^{\mathrm{2}} +\right. \\ $$$$ \\ $$$$\left.\frac{\mathrm{6}!}{\mathrm{2}!\mathrm{4}!\mathrm{0}!}×\left(\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{3}\right)^{\mathrm{0}} \left(−\mathrm{1}\right)^{\mathrm{4}} \right] \\ $$$$\:{pls}\:{check}\:{and}\:{calculate}... \\ $$$$\left[\mathrm{15}×\mathrm{16}×\mathrm{9}+\mathrm{60}×\mathrm{8}×\mathrm{3}+\mathrm{15}×\mathrm{4}\right. \\ $$$$=\:\:\:\:\:\:\mathrm{2160}\:\:\:\:\:+\mathrm{1440}+\mathrm{60} \\ $$$$=\mathrm{3660} \\ $$

Commented by rahul 19 last updated on 24/Nov/18

=3660. (2160+1440+60)...I forgot the last case! thanks sir ����

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18

thank you for recheck in calculation  i have used 3! twice by mistake...

$${thank}\:{you}\:{for}\:{recheck}\:{in}\:{calculation} \\ $$$${i}\:{have}\:{used}\:\mathrm{3}!\:{twice}\:{by}\:{mistake}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com