Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142028 by mnjuly1970 last updated on 25/May/21

        ............Calculus.........           ∫_0 ^( ∞) ((sin(sin(x)).e^(cos(x)) )/x)dx=???   ............m.n.....

$$\:\:\:\:\:\:\:\:............{Calculus}.........\: \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({sin}\left({x}\right)\right).{e}^{{cos}\left({x}\right)} }{{x}}{dx}=??? \\ $$$$\:............{m}.{n}..... \\ $$

Answered by mindispower last updated on 25/May/21

=Im∫_0 ^∞ (e^(cos(x)+isin(x)) /x)  Im∫_0 ^∞ (e^e^(ix)  /x)dx=Im∫_0 ^∞ Σ_(k≥0) (e^(ikx) /(k!x))dx  =Σ_(k≥0) ∫_0 ^∞ ((sin(kx))/(x.k!))dx=Σ_(k≥0) (1/(k!))∫_0 ^∞ ((sin(kx))/(kx))d(kx)  =Σ_(k≥0) (1/(k!)).∫_0 ^∞ ((sin(x))/x)dx=(π/2)Σ_(k≥0) (1/(k!))=(π/2)e

$$={Im}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{cos}\left({x}\right)+{isin}\left({x}\right)} }{{x}} \\ $$$${Im}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{e}^{{ix}} } }{{x}}{dx}={Im}\int_{\mathrm{0}} ^{\infty} \underset{{k}\geqslant\mathrm{0}} {\sum}\frac{{e}^{{ikx}} }{{k}!{x}}{dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({kx}\right)}{{x}.{k}!}{dx}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{k}!}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({kx}\right)}{{kx}}{d}\left({kx}\right) \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{k}!}.\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{k}!}=\frac{\pi}{\mathrm{2}}{e} \\ $$

Commented by mnjuly1970 last updated on 25/May/21

zendeh bashid  tashakor .thanks alot  mr power ...

$${zendeh}\:{bashid}\:\:{tashakor}\:.{thanks}\:{alot} \\ $$$${mr}\:{power}\:... \\ $$

Commented by mindispower last updated on 25/May/21

withe pleasur sir thank you

$${withe}\:{pleasur}\:{sir}\:{thank}\:{you} \\ $$

Answered by Dwaipayan Shikari last updated on 25/May/21

e^(cosx) sin(sinx)=Σ_(n=0) ^∞ ((sin(nx))/(n!))  ∫_0 ^∞ Σ_(n=0) ^∞ ((sin(nx))/(xn!))dx=Σ_(n=0) ^∞ (1/(n!))∫_0 ^∞ ((sin(nx))/x)dx=((πe)/2)

$${e}^{{cosx}} {sin}\left({sinx}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{sin}\left({nx}\right)}{{n}!} \\ $$$$\int_{\mathrm{0}} ^{\infty} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{sin}\left({nx}\right)}{{xn}!}{dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({nx}\right)}{{x}}{dx}=\frac{\pi{e}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 26/May/21

  thanks alot...

$$\:\:{thanks}\:{alot}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com