Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208693 by Frix last updated on 21/Jun/24

Calculate the area enclosed by the curve  ((1/x)−2)^2 +((1/y)−2)^2 =1

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Answered by mr W last updated on 21/Jun/24

(1/x)−2=u ⇒x=(1/(2+u))  (1/y)−2=v ⇒y=(1/(2+v))  u^2 +v^2 =1  u=r cos θ  v=r sin θ  dA=dxdy=((dudv)/((2+u)^2 (2+v)^2 ))  dudv=rdrdθ  A=∫_0 ^(2π) ∫_0 ^1 ((rdrdθ)/((2+r cos θ)^2 (2+r sin θ)^2 ))      ≈0.296131

$$\frac{\mathrm{1}}{{x}}−\mathrm{2}={u}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}+{u}} \\ $$$$\frac{\mathrm{1}}{{y}}−\mathrm{2}={v}\:\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}+{v}} \\ $$$${u}^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{1} \\ $$$${u}={r}\:\mathrm{cos}\:\theta \\ $$$${v}={r}\:\mathrm{sin}\:\theta \\ $$$${dA}={dxdy}=\frac{{dudv}}{\left(\mathrm{2}+{u}\right)^{\mathrm{2}} \left(\mathrm{2}+{v}\right)^{\mathrm{2}} } \\ $$$${dudv}={rdrd}\theta \\ $$$${A}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{rdrd}\theta}{\left(\mathrm{2}+{r}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \left(\mathrm{2}+{r}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\approx\mathrm{0}.\mathrm{296131} \\ $$

Commented by mr W last updated on 21/Jun/24

Commented by mr W last updated on 21/Jun/24

Commented by Frix last updated on 21/Jun/24

Yes.  I got the exact result following a different  path:, but it′s not easy...  A=((8(√3))/(147))π

$$\mathrm{Yes}. \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{result}\:\mathrm{following}\:\mathrm{a}\:\mathrm{different} \\ $$$$\mathrm{path}:,\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{easy}... \\ $$$${A}=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{147}}\pi \\ $$

Answered by mr W last updated on 22/Jun/24

 { ((x=(1/(2+cos t)))),((y=(1/(2+sin t)))) :}  dA=((ydx−xdy)/2)=(((yx′−xy′)dt)/2)  dA=(1/2)×((2(sin t+cos t)+1)/((2+sin t)^2 (2+cos t)^2 ))×dt  A=(1/2)∣∫_0 ^(2π) ((2(sin t+cos t)+1)/((2+sin t)^2 (2+cos t)^2 ))dt∣      =((8π)/(49(√3)))≈0.296131

$$\begin{cases}{{x}=\frac{\mathrm{1}}{\mathrm{2}+\mathrm{cos}\:{t}}}\\{{y}=\frac{\mathrm{1}}{\mathrm{2}+\mathrm{sin}\:{t}}}\end{cases} \\ $$$${dA}=\frac{{ydx}−{xdy}}{\mathrm{2}}=\frac{\left({yx}'−{xy}'\right){dt}}{\mathrm{2}} \\ $$$${dA}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}\left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\mathrm{1}}{\left(\mathrm{2}+\mathrm{sin}\:{t}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:{t}\right)^{\mathrm{2}} }×{dt} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\mid\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{2}\left(\mathrm{sin}\:{t}+\mathrm{cos}\:{t}\right)+\mathrm{1}}{\left(\mathrm{2}+\mathrm{sin}\:{t}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:{t}\right)^{\mathrm{2}} }{dt}\mid \\ $$$$\:\:\:\:=\frac{\mathrm{8}\pi}{\mathrm{49}\sqrt{\mathrm{3}}}\approx\mathrm{0}.\mathrm{296131} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com