Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 7628 by Tawakalitu. last updated on 06/Sep/16

By the use of substitution  x = μ^2 , show that  the legendary equation ,  (1 − μ^2 )y′′ − 2μy′ + n(n + 1)y = 0,   where n is a constant change to hyper geometric  equation . hence obtain the solution to the   resulting hyper geometric differential equation   by way of comparison.

$${By}\:{the}\:{use}\:{of}\:{substitution}\:\:{x}\:=\:\mu^{\mathrm{2}} ,\:{show}\:{that} \\ $$$${the}\:{legendary}\:{equation}\:, \\ $$$$\left(\mathrm{1}\:−\:\mu^{\mathrm{2}} \right){y}''\:−\:\mathrm{2}\mu{y}'\:+\:{n}\left({n}\:+\:\mathrm{1}\right){y}\:=\:\mathrm{0},\: \\ $$$${where}\:{n}\:{is}\:{a}\:{constant}\:{change}\:{to}\:{hyper}\:{geometric} \\ $$$${equation}\:.\:{hence}\:{obtain}\:{the}\:{solution}\:{to}\:{the}\: \\ $$$${resulting}\:{hyper}\:{geometric}\:{differential}\:{equation}\: \\ $$$${by}\:{way}\:{of}\:{comparison}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com