Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 108450 by bemath last updated on 17/Aug/20

  ((BeMath)/(⊂⊃))  (1)find ((1/2))!  (2)∫_0 ^(π/2) ((x sin x)/((1+cos x)^2 )) dx

$$\:\:\frac{\mathcal{B}{e}\mathcal{M}{ath}}{\subset\supset} \\ $$$$\left(\mathrm{1}\right){find}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$$\left(\mathrm{2}\right)\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{x}\:\mathrm{sin}\:{x}}{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$

Commented by Smail last updated on 17/Aug/20

I_n =∫_0 ^∞ t^n e^(−t) dt=n!  n=(1/2)  I_(1/2) =∫_0 ^∞ (√t)e^(−t) dt=((1/2))!  x=(√t)⇒dx=(dt/(2(√t)))  I_(1/2) =2∫_0 ^∞ x^2 e^(−x^2 ) dx=((1/2))!  By parts  u=x⇒u′=1  v′=xe^(−x^2 ) ⇒v=((−1)/2)e^(−x^2 )   I_(1/2) =∫_0 ^∞ e^(−x^2 ) dx=((1/2))!  ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)  So  ((1/2))!=((√π)/2)

$${I}_{{n}} =\int_{\mathrm{0}} ^{\infty} {t}^{{n}} {e}^{−{t}} {dt}={n}! \\ $$$${n}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}_{\mathrm{1}/\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \sqrt{{t}}{e}^{−{t}} {dt}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$${x}=\sqrt{{t}}\Rightarrow{dx}=\frac{{dt}}{\mathrm{2}\sqrt{{t}}} \\ $$$${I}_{\mathrm{1}/\mathrm{2}} =\mathrm{2}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$${By}\:{parts} \\ $$$${u}={x}\Rightarrow{u}'=\mathrm{1} \\ $$$${v}'={xe}^{−{x}^{\mathrm{2}} } \Rightarrow{v}=\frac{−\mathrm{1}}{\mathrm{2}}{e}^{−{x}^{\mathrm{2}} } \\ $$$${I}_{\mathrm{1}/\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$${So} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$

Commented by bemath last updated on 17/Aug/20

thank you

$${thank}\:{you} \\ $$

Answered by john santu last updated on 17/Aug/20

Answered by Dwaipayan Shikari last updated on 17/Aug/20

((1/2))!=(1/2)Γ((1/2))=((√π)/2)

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com