Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199183 by hardmath last updated on 29/Oct/23

B,O,M - Each is a distinct positive  integer  If   B ∙ O ∙ M = 223  Find:   max(B + O + M)=?

$$\mathrm{B},\mathrm{O},\mathrm{M}\:-\:\mathrm{Each}\:\mathrm{is}\:\mathrm{a}\:\mathrm{distinct}\:\mathrm{positive} \\ $$$$\mathrm{integer} \\ $$$$\mathrm{If}\:\:\:\mathrm{B}\:\centerdot\:\mathrm{O}\:\centerdot\:\mathrm{M}\:=\:\mathrm{223} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{B}\:+\:\mathrm{O}\:+\:\mathrm{M}\right)=? \\ $$

Answered by mr W last updated on 19/Nov/23

basic knowledge: a prime number  has only two divisors: 1 and itself.  223 is prime, so it can not have three  distinct positive divisors B, O, M!  ⇒your question is wrong!

$${basic}\:{knowledge}:\:{a}\:{prime}\:{number} \\ $$$${has}\:{only}\:{two}\:{divisors}:\:\mathrm{1}\:{and}\:{itself}. \\ $$$$\mathrm{223}\:{is}\:{prime},\:{so}\:{it}\:{can}\:{not}\:{have}\:{three} \\ $$$${distinct}\:{positive}\:{divisors}\:{B},\:{O},\:{M}! \\ $$$$\Rightarrow{your}\:{question}\:{is}\:{wrong}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com