Question and Answers Forum
All Questions Topic List
ArithmeticQuestion and Answers: Page 1
Question Number 227139 Answers: 2 Comments: 0
Question Number 226919 Answers: 4 Comments: 0
Question Number 226798 Answers: 1 Comments: 0
$${let}\:{gcd}\left({m},{n}\right)=\mathrm{1}.\:{Determine}\:{gcd}\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right) \\ $$
Question Number 226779 Answers: 1 Comments: 0
$${By}\:{using}\:{De}\:{Moivres}\:{theorm} \\ $$$${simplify} \\ $$$$\left({a}\right)\frac{\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)}{\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\left({b}\right)\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{8}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}} \\ $$
Question Number 226775 Answers: 0 Comments: 0
$${Prove}\:{that}\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 226721 Answers: 4 Comments: 0
Question Number 226697 Answers: 1 Comments: 1
Question Number 226612 Answers: 0 Comments: 1
Question Number 226608 Answers: 1 Comments: 0
Question Number 226609 Answers: 3 Comments: 0
Question Number 226586 Answers: 0 Comments: 0
Question Number 226585 Answers: 0 Comments: 0
Question Number 226513 Answers: 2 Comments: 0
$${Find}\:{gcd}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} ,{ab}\right)\:{if}\:{gcd}\left({a},{b}\right)=\mathrm{1} \\ $$
Question Number 226464 Answers: 0 Comments: 2
Question Number 226455 Answers: 1 Comments: 0
Question Number 226177 Answers: 0 Comments: 0
Question Number 226943 Answers: 4 Comments: 3
Question Number 226942 Answers: 4 Comments: 0
Question Number 226006 Answers: 0 Comments: 2
$$\left(\mathrm{3}/\mathrm{7}\right)^{\mathrm{0}} \:\:\:{prove}\:{and}\:{evalute}\:{show}\:{all} \\ $$$${working} \\ $$
Question Number 225599 Answers: 1 Comments: 2
Question Number 224691 Answers: 1 Comments: 0
$$\mathrm{3}{k}+\mathrm{4}={n}^{\mathrm{2}} .\:{k},{n}\:\in\mathbb{N} \\ $$$${Find}\:{all}\:{n}\:{numbers}\:. \\ $$
Question Number 224443 Answers: 1 Comments: 0
$$ \\ $$$$\boldsymbol{{S}}{ame}\:{problem}\:{with}\:{me} \\ $$$${please}\:{fix}\:{the}\:{problem} \\ $$
Question Number 224305 Answers: 1 Comments: 0
Question Number 224100 Answers: 1 Comments: 0
$$\mathrm{Calculate}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left[\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{sh}\left(\mathrm{t}\right)}\right]^{\:\mathrm{2}} \mathrm{dt} \\ $$
Question Number 223570 Answers: 0 Comments: 0
$${demontrer}\:{que}\:{quelque}\:{soit}\:{k}\:{appartenant}\:{N}\:\:{l} \\ $$
Question Number 223414 Answers: 1 Comments: 0
$${is}\:{it}\:{possible}\:{to}\:{prove}\:{that}\:{mn}\left({m}+{n}\right)\left({m}−{n}\right)\: \\ $$$${divisible}\:{by}\:\mathrm{6}\:{always}\:\:\:\:\:\:\:\:\:\: \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com