Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196086 by MM42 last updated on 17/Aug/23

Answer to the question “196008”  Σ_(k=1) ^n tan^2 (((kπ)/(2n+1)))=n(2n+1)  Ans)  according  “de moivre”  sin(2n+1)α= (((2n+1)),((      1)) )(cosα)^(2n) sinα− (((2n+1)),((     3)) )(cosα)^(2n−2) (sinα)^3 +....  =(cosα)^(2n) (sinα)[ (((2n+1)),((      1)) )− (((2n+1)),((     3)) ) tan^2 α+...]  for  “α_k =((kπ)/(2n+1))     ;  1≤k≤n ⇒sin(2n+1)α_k =0  ⇒∀  1≤k≤n→  (((2n+1)),((     1)) )− (((2n+1)),((      3)) ) tan^2 α_k +...=0  therefore  “ x_k =tan^2 α_k  ” thr roots of  the equation are blowe  x^n − (((2n+1)),((2n−1)) ) x^n + (((2n+1)),((2n−3)) )x^(n−1) −...=0  the sume of the roots of the equation is “ s= (((2n+1)),((2n−1)) ) ”  ⇒s=Σ_(k=1) ^n  tan^2 (((kπ)/(2n+1)))=n(2n+1)✓  the proof of the seconf part is done similarly

$${Answer}\:{to}\:{the}\:{question}\:``\mathrm{196008}'' \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\left.{Ans}\right) \\ $$$${according}\:\:``{de}\:{moivre}'' \\ $$$${sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}} {sin}\alpha−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\left({cos}\alpha\right)^{\mathrm{2}{n}−\mathrm{2}} \left({sin}\alpha\right)^{\mathrm{3}} +.... \\ $$$$=\left({cos}\alpha\right)^{\mathrm{2}{n}} \left({sin}\alpha\right)\left[\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha+...\right] \\ $$$${for}\:\:``\alpha_{{k}} =\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\:\:\:\:\:;\:\:\mathrm{1}\leqslant{k}\leqslant{n}\:\Rightarrow{sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\alpha_{{k}} =\mathrm{0} \\ $$$$\Rightarrow\forall\:\:\mathrm{1}\leqslant{k}\leqslant{n}\rightarrow\:\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\mathrm{1}}\end{pmatrix}−\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\:{tan}^{\mathrm{2}} \alpha_{{k}} +...=\mathrm{0} \\ $$$${therefore}\:\:``\:{x}_{{k}} ={tan}^{\mathrm{2}} \alpha_{{k}} \:''\:{thr}\:{roots}\:{of}\:\:{the}\:{equation}\:{are}\:{blowe} \\ $$$${x}^{{n}} −\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:{x}^{{n}} +\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{3}}\end{pmatrix}{x}^{{n}−\mathrm{1}} −...=\mathrm{0} \\ $$$${the}\:{sume}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{equation}\:{is}\:``\:{s}=\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{\mathrm{2}{n}−\mathrm{1}}\end{pmatrix}\:'' \\ $$$$\Rightarrow{s}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:{tan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={n}\left(\mathrm{2}{n}+\mathrm{1}\right)\checkmark \\ $$$${the}\:{proof}\:{of}\:{the}\:{seconf}\:{part}\:{is}\:{done}\:{similarly} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com