Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 201660 by LimPorly last updated on 10/Dec/23

An equilateral triangle inscribed in a parabola  y^2 =4x. One of its vertices is at the vertex of  the parabola.  Find the length of each side of the triangle in units.

$${An}\:{equilateral}\:{triangle}\:{inscribed}\:{in}\:{a}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}.\:{One}\:{of}\:{its}\:{vertices}\:{is}\:{at}\:{the}\:{vertex}\:{of}\:\:{the}\:{parabola}. \\ $$$${Find}\:{the}\:{length}\:{of}\:{each}\:{side}\:{of}\:{the}\:{triangle}\:{in}\:{units}. \\ $$

Answered by som(math1967) last updated on 10/Dec/23

 slope of AB =tan30=(1/( (√3)))   equn. of AB  y=(1/( (√3)))x  AB and parabola intersect at A,B,C   y^2 =4x  ⇒(x^2 /3)=4x  ⇒x^2 −12x=0  ∴x=0,12  x=12 ∴y=4(√3) ,−4(√3)  co ordinate of B (12,4(√3))  AB=(√(12^2 +48^2 ))=12(√5) unit

$$\:{slope}\:{of}\:{AB}\:={tan}\mathrm{30}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\:{equn}.\:{of}\:{AB}\:\:{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{x} \\ $$$${AB}\:{and}\:{parabola}\:{intersect}\:{at}\:{A},{B},{C} \\ $$$$\:{y}^{\mathrm{2}} =\mathrm{4}{x} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{4}{x}\:\:\Rightarrow{x}^{\mathrm{2}} −\mathrm{12}{x}=\mathrm{0} \\ $$$$\therefore{x}=\mathrm{0},\mathrm{12} \\ $$$${x}=\mathrm{12}\:\therefore{y}=\mathrm{4}\sqrt{\mathrm{3}}\:,−\mathrm{4}\sqrt{\mathrm{3}} \\ $$$${co}\:{ordinate}\:{of}\:{B}\:\left(\mathrm{12},\mathrm{4}\sqrt{\mathrm{3}}\right) \\ $$$${AB}=\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{48}^{\mathrm{2}} }=\mathrm{12}\sqrt{\mathrm{5}}\:{unit} \\ $$

Commented by som(math1967) last updated on 10/Dec/23

Commented by LimPorly last updated on 10/Dec/23

Thank a lot sir

$${Thank}\:{a}\:{lot}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com