Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 999

Question Number 112338    Answers: 0   Comments: 0

Question Number 112334    Answers: 0   Comments: 0

Question Number 112331    Answers: 0   Comments: 2

Question Number 112328    Answers: 1   Comments: 0

find the all root (m^3 −6m+9)=0

$${find}\:{the}\:{all}\:{root}\:\left({m}^{\mathrm{3}} −\mathrm{6}{m}+\mathrm{9}\right)=\mathrm{0} \\ $$

Question Number 112313    Answers: 5   Comments: 2

solve ∫_0 ^1 ((lnx)/(√(1+x^2 )))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 112323    Answers: 0   Comments: 1

_≤^≥ = SOLVE the EQUATION_ ^ _( •) n−⌊(√n)⌋−⌊(n)^(1/3) ⌋+⌊(n)^(1/6) ⌋=2016

$$\:_{\leqslant} ^{\geqslant} =\:\:\mathbb{SOLVE}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathcal{EQUATION}}_{} ^{\:_{\:\:\bullet} } \\ $$$$\:\:\:\boldsymbol{\mathrm{n}}−\lfloor\sqrt{\boldsymbol{\mathrm{n}}}\rfloor−\lfloor\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{n}}}\rfloor+\lfloor\sqrt[{\mathrm{6}}]{\boldsymbol{\mathrm{n}}}\rfloor=\mathrm{2016} \\ $$$$ \\ $$

Question Number 112320    Answers: 2   Comments: 1

Question Number 112311    Answers: 1   Comments: 2

lim_(x→0) (√((3sin^2 x+cos 2x−1)/(x.tan 2x))) ?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{\mathrm{3sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}{\mathrm{x}.\mathrm{tan}\:\mathrm{2x}}}\:? \\ $$

Question Number 112310    Answers: 4   Comments: 0

Question Number 112308    Answers: 0   Comments: 0

Question Number 112301    Answers: 0   Comments: 1

Question Number 112280    Answers: 2   Comments: 0

If 15 ≤ ∣10−(1/3)a∣ < 20 find a ∈ R

$$\:\:\mathrm{If}\:\mathrm{15}\:\leqslant\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{a}\mid\:<\:\mathrm{20}\: \\ $$$$\mathrm{find}\:\mathrm{a}\:\in\:\mathbb{R} \\ $$

Question Number 112271    Answers: 2   Comments: 0

(√(bemath)) ∫ sin x (√(1−sin x)) dx ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\:\int\:\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Question Number 112266    Answers: 1   Comments: 0

Let Ω denote the circumcircle of ABC. The tangent to Ω at A meets BC at X. Let the angle bisectors of ∠AXB meet AC and AB at E and F respectively. D is the foot of the angle bisector from ∠BAC on BC. Let AD intersect EF at K and Ω again at L(other than A). Prove that AEDF is a rhombus and further prove that the circle defined by triangle KLX passes through the midpoint of line segment BC.

$$\mathrm{Let}\:\Omega\:\mathrm{denote}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{ABC}. \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\Omega\:\mathrm{at}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{BC}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{bisectors}\:\mathrm{of}\:\angle\mathrm{AXB}\:\mathrm{meet} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F} \\ $$$$\mathrm{respectively}.\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{bisector}\:\mathrm{from}\:\angle\mathrm{BAC}\:\mathrm{on}\:\mathrm{BC}.\:\mathrm{Let}\:\mathrm{AD} \\ $$$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \\ $$$$\mathrm{L}\left(\mathrm{other}\:\mathrm{than}\:\mathrm{A}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{AEDF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rhombus}\:\mathrm{and}\:\mathrm{further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{triangle}\:\mathrm{KLX}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment} \\ $$$$\mathrm{BC}. \\ $$

Question Number 112287    Answers: 3   Comments: 0

{ ((x^2 + 3xy + y^2 = −1)),((x^3 + y^3 = 7)) :}

$$\begin{cases}{{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{2}} \:=\:−\mathrm{1}}\\{{x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$

Question Number 112254    Answers: 1   Comments: 0

sin ((π/( 7))).sin (((2π)/7)).sin (((3π)/7)) =?

$$\:\:\:\mathrm{sin}\:\left(\frac{\pi}{\:\mathrm{7}}\right).\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=? \\ $$

Question Number 112251    Answers: 1   Comments: 0

∫ (dx/((x^4 −1)(√(x^2 +1))))

$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Question Number 112249    Answers: 2   Comments: 1

∫(dx/((αx^2 +px+β)(√(αx^2 +qx+β))))=?

$$\int\frac{{dx}}{\left(\alpha{x}^{\mathrm{2}} +{px}+\beta\right)\sqrt{\alpha{x}^{\mathrm{2}} +{qx}+\beta}}=? \\ $$

Question Number 112248    Answers: 0   Comments: 0

∫_(−((π )/2)) ^(π/2) cos^(2019) (x)cos(2020x)dx pls help

$$\int_{−\frac{\pi\:\:\:}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2019}} \left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{2020x}\right)\mathrm{dx} \\ $$$$\mathrm{pls}\:\mathrm{help} \\ $$

Question Number 112489    Answers: 0   Comments: 0

solve ∫_0 ^(π/2) ln^2 (sinx)dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}{x}\right){dx} \\ $$

Question Number 112488    Answers: 0   Comments: 0

solve ∫_0 ^∞ ((ln(1+x^2 ))/(1+x^4 ))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 112487    Answers: 0   Comments: 0

solve ∫_0 ^∞ ((ln(1+x^3 ))/(1+x^2 ))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 112245    Answers: 0   Comments: 0

(1/(1+x^2 ))+(1/(1+x^4 ))+(1/(1+x^8 ))+..... ( x>1)

$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{8}} }+.....\:\:\:\:\:\:\:\:\:\:\left(\:{x}>\mathrm{1}\right) \\ $$

Question Number 112231    Answers: 0   Comments: 0

∫z^3 e^(−(4/3)z^3 ) dz

$$\int{z}^{\mathrm{3}} {e}^{−\frac{\mathrm{4}}{\mathrm{3}}{z}^{\mathrm{3}} } {dz} \\ $$

Question Number 112217    Answers: 0   Comments: 2

proporsed by m.n july 1970 evaluate Σ_(n=1) ^∞ (H_n /(n2^n )) solution recall thatΣ_(n=1) ^∞ H_n x^n =((ln(1−x))/(x−1)) ∵((H_n x^n )/n)=∫_0 ^x H_n t^(n−1) dt Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=∫_0 ^x ((ln(1−t))/(t(t−1)))dt Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=∫_0 ^x ((ln(1−t))/(t−1))dt−∫_0 ^x ((ln(1−t))/t)dt=A−B let A=∫_0 ^x ((ln(1−t))/(t−1))dt=−∫_0 ^x ((ln(1−t))/(1−t))dt A=−[−ln^2 (1−t)]_0 ^x +∫_0 ^x −((ln(1−t))/(1−t))dt 2A=ln^2 (1−x) A=(1/2)ln^2 (1−x)......(1) then B=∫_0 ^x ((ln(1−t))/t)dt=∫_0 ^1 ((ln(1−t))/t)dt+∫_1 ^x ((ln(1−t))/t)dt B=−Li_2 (1)−[Li_2 (x)−Li_2 (1)] B=−Li_2 (x)....(2) but I=A−B I=Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=(1/2)ln^2 (2)+Li_2 (x) ∵Σ_(n=1) ^∞ ((H_n x^n )/n)=(1/2)ln^2 (2)+Li_2 (x) but x=(1/2) Σ_(n=1) ^∞ (H_n /(n2^n ))=(1/2)ln^2 (2)+Li_2 ((1/2))=(1/2)ln^2 (2)+(π^2 /(12))−(1/2)ln^2 (2) ∵Σ_(n=1) ^∞ (H_n /(n2^n ))=(π^2 /(12)) by mathdave(06/09/2020)

$${proporsed}\:{by}\:{m}.{n}\:{july}\:\mathrm{1970} \\ $$$${evaluate} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}\mathrm{2}^{{n}} } \\ $$$${solution}\: \\ $$$${recall}\:{that}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{H}_{{n}} {x}^{{n}} =\frac{\mathrm{ln}\left(\mathrm{1}−{x}\right)}{{x}−\mathrm{1}} \\ $$$$\because\frac{{H}_{{n}} {x}^{{n}} }{{n}}=\int_{\mathrm{0}} ^{{x}} {H}_{{n}} {t}^{{n}−\mathrm{1}} {dt} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{{x}} {H}_{{n}} {t}^{{n}−\mathrm{1}} {dt}=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}\left({t}−\mathrm{1}\right)}{dt} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{{x}} {H}_{{n}} {t}^{{n}−\mathrm{1}} {dt}=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}−\mathrm{1}}{dt}−\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}={A}−{B} \\ $$$${let}\:{A}=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}−\mathrm{1}}{dt}=−\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}−{t}}{dt} \\ $$$${A}=−\left[−\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)\right]_{\mathrm{0}} ^{{x}} +\int_{\mathrm{0}} ^{{x}} −\frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}−{t}}{dt} \\ $$$$\mathrm{2}{A}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right) \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)......\left(\mathrm{1}\right) \\ $$$${then}\: \\ $$$${B}=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}+\int_{\mathrm{1}} ^{{x}} \frac{\mathrm{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$${B}=−{Li}_{\mathrm{2}} \left(\mathrm{1}\right)−\left[{Li}_{\mathrm{2}} \left({x}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}\right)\right] \\ $$$${B}=−{Li}_{\mathrm{2}} \left({x}\right)....\left(\mathrm{2}\right) \\ $$$${but}\:{I}={A}−{B} \\ $$$${I}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{{x}} {H}_{{n}} {t}^{{n}−\mathrm{1}} {dt}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+{Li}_{\mathrm{2}} \left({x}\right) \\ $$$$\because\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} {x}^{{n}} }{{n}}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+{Li}_{\mathrm{2}} \left({x}\right) \\ $$$${but}\:\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}\mathrm{2}^{{n}} }=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\because\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}\mathrm{2}^{{n}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$${by}\:{mathdave}\left(\mathrm{06}/\mathrm{09}/\mathrm{2020}\right) \\ $$

Question Number 112364    Answers: 1   Comments: 0

(1) Let z = (√(3+4i)) + (√(−3−4i)) , where square root is taken with positive real part. Then Re(z) is _ (a)3 (b) 4 (c) 2 (d) 1 (2)Suppose a,b,c are in AP and a^2 ,b^2 ,c^2 are in GP. If a<b<c and a+b+c=(3/2), then a = _ (a) (1/(2(√2))) (b) (1/(2(√3))) (c) (((√3)−2)/(2(√3))) (d) (((√2)−2)/(2(√2))) (3)A man sent 7 letters to his 7 friend . The letters are kept in addressed envelopes at random. The probability that 3 friend receive correct letters and 4 letters go to wrong destination is _ (a) (1/8) (b) (1/(16)) (c) (3/(32)) (d) (5/(64))

$$\left(\mathrm{1}\right)\:{Let}\:{z}\:=\:\sqrt{\mathrm{3}+\mathrm{4}{i}}\:+\:\sqrt{−\mathrm{3}−\mathrm{4}{i}}\:,\:{where} \\ $$$${square}\:{root}\:{is}\:{taken}\:{with}\:{positive}\: \\ $$$${real}\:{part}.\:{Then}\:{Re}\left({z}\right)\:{is}\:\_ \\ $$$$\left({a}\right)\mathrm{3}\:\:\:\:\:\left({b}\right)\:\mathrm{4}\:\:\:\:\:\left({c}\right)\:\mathrm{2}\:\:\:\:\:\left({d}\right)\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right){Suppose}\:{a},{b},{c}\:{are}\:{in}\:{AP}\:{and}\:{a}^{\mathrm{2}} ,{b}^{\mathrm{2}} ,{c}^{\mathrm{2}} \\ $$$${are}\:{in}\:{GP}.\:{If}\:{a}<{b}<{c}\:{and}\:{a}+{b}+{c}=\frac{\mathrm{3}}{\mathrm{2}}, \\ $$$${then}\:{a}\:=\:\_ \\ $$$$\left({a}\right)\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\left({c}\right)\:\frac{\sqrt{\mathrm{3}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\left({d}\right)\:\frac{\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\left(\mathrm{3}\right){A}\:{man}\:{sent}\:\mathrm{7}\:{letters}\:{to}\:{his}\:\mathrm{7}\:{friend} \\ $$$$.\:{The}\:{letters}\:{are}\:{kept}\:{in}\:{addressed}\: \\ $$$${envelopes}\:{at}\:{random}.\:{The}\:{probability} \\ $$$${that}\:\mathrm{3}\:{friend}\:{receive}\:{correct}\:{letters} \\ $$$${and}\:\mathrm{4}\:{letters}\:{go}\:{to}\:{wrong}\:{destination} \\ $$$${is}\:\_ \\ $$$$\left({a}\right)\:\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{1}}{\mathrm{16}}\:\:\:\left({c}\right)\:\frac{\mathrm{3}}{\mathrm{32}}\:\:\:\:\:\left({d}\right)\:\frac{\mathrm{5}}{\mathrm{64}} \\ $$

  Pg 994      Pg 995      Pg 996      Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com