Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 995
Question Number 119956 Answers: 2 Comments: 0
$${Given}\:{a}\:=\:\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{3}^{\mathrm{4}} +...+\mathrm{3}^{\mathrm{100}} \\ $$$${Find}\:{the}\:{remainder}\:{of}\:{dividing}\:{the}\:{number} \\ $$$${by}\:\mathrm{5}\:. \\ $$$$\left({a}\right)\:\mathrm{2}\:\:\:\:\:\left({b}\right)\:\mathrm{0}\:\:\:\:\:\:\:\left({c}\right)\mathrm{4}\:\:\:\:\:\:\left({d}\right)\mathrm{1}\:\:\:\:\:\:\left({e}\right)\:\mathrm{3} \\ $$
Question Number 119939 Answers: 3 Comments: 0
Question Number 119937 Answers: 3 Comments: 0
$$\:\left({i}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\frac{\mathrm{9}\pi}{\mathrm{7}}\right)? \\ $$$$\left({ii}\right)\:\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{1}°\right)\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{2}°\right)\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{3}°\right)×...×\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{29}°\right)? \\ $$
Question Number 119934 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{sin}\:^{\mathrm{8}} {x}−\mathrm{cos}\:^{\mathrm{8}} {x}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:{dx}\: \\ $$
Question Number 119933 Answers: 4 Comments: 0
$$\:\frac{{dx}}{{dy}}\:−{y}\:=\:{xy}^{\mathrm{2}} \\ $$
Question Number 119930 Answers: 1 Comments: 0
Question Number 119928 Answers: 2 Comments: 0
Question Number 119922 Answers: 0 Comments: 0
Question Number 119921 Answers: 2 Comments: 0
$${solving}\:{the}\:{following}\:{system}\:{of}\:{equations} \\ $$$$\begin{cases}{\frac{\mathrm{3}{x}−{y}}{{x}−\mathrm{3}{y}}={x}^{\mathrm{2}} }\\{\frac{\mathrm{3}{y}−{z}}{{y}−\mathrm{3}{z}}={y}^{\mathrm{2}} }\\{\frac{\mathrm{3}{z}−{x}}{{z}−\mathrm{3}{x}}={z}^{\mathrm{2}} }\end{cases} \\ $$
Question Number 119920 Answers: 5 Comments: 0
$$\:\int\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\:{dx}\:=\:?\:,\:{x}\epsilon\left(−\mathrm{1},\mathrm{1}\right) \\ $$
Question Number 119919 Answers: 1 Comments: 0
$$\:\mathrm{sin}\:\mathrm{70}°\:\mathrm{cos}\:\mathrm{50}°\:+\:\mathrm{sin}\:\mathrm{260}°\:\mathrm{cos}\:\mathrm{280}°\:=? \\ $$
Question Number 119915 Answers: 1 Comments: 0
Question Number 119914 Answers: 0 Comments: 0
Question Number 119909 Answers: 2 Comments: 0
$${Given}\:{f}\left({x}\right)=\frac{{px}+{q}}{{x}+\mathrm{2}}\:,\:{q}\neq\:\mathrm{0} \\ $$$${f}^{−\mathrm{1}} \:\left({q}\right)\:=\:−\mathrm{1}\:{then}\:{f}^{−\mathrm{1}} \left(\mathrm{2}{q}\right)=? \\ $$
Question Number 119902 Answers: 3 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{cos}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}}} \:? \\ $$
Question Number 119896 Answers: 2 Comments: 1
Question Number 119894 Answers: 2 Comments: 0
Question Number 119893 Answers: 2 Comments: 0
Question Number 119892 Answers: 1 Comments: 0
Question Number 119891 Answers: 0 Comments: 0
$${show}\:{that}\: \\ $$$$\frac{{d}}{{dx}}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {lnt}\:{dt} \\ $$
Question Number 119876 Answers: 0 Comments: 0
Question Number 119875 Answers: 3 Comments: 1
Question Number 119866 Answers: 1 Comments: 4
Question Number 119867 Answers: 1 Comments: 2
$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)^{{n}} −\sqrt{{e}}}{\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)^{{n}} −{e}^{\mathrm{2}} }=??? \\ $$
Question Number 119856 Answers: 0 Comments: 4
$$\mathrm{i}\:\mathrm{have}\:\mathrm{forgotten}\:\mathrm{my}\:\mathrm{password}. \\ $$$$\mathrm{how}\:\mathrm{may}\:\mathrm{i}\:\mathrm{retrieve}\:\mathrm{it}? \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{or}\:\mathrm{forward}\:\mathrm{me}\:\mathrm{to} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{developers}\:\mathrm{please} \\ $$
Question Number 119852 Answers: 1 Comments: 0
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}^{\mathrm{2}} \:\int\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{{n}}} {\:}}{x}^{{x}+\mathrm{1}} \:{dx}\:=? \\ $$
Pg 990 Pg 991 Pg 992 Pg 993 Pg 994 Pg 995 Pg 996 Pg 997 Pg 998 Pg 999
Terms of Service
Privacy Policy
Contact: info@tinkutara.com