Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 995

Question Number 119839    Answers: 1   Comments: 0

Prove that sin x−cos^2 x+sin^3 x−cos^4 x+sin^5 x−cos^6 x +sin^7 x−cos^8 x+……=(√2)−1

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{3}} {x}−\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{5}} {x}−\mathrm{cos}^{\mathrm{6}} {x} \\ $$$$+\mathrm{sin}^{\mathrm{7}} {x}−\mathrm{cos}^{\mathrm{8}} {x}+\ldots\ldots=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Question Number 119837    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^(√n) (1−(x/(√n)))^(√(2n)) arctan(((πx)/n))dx

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{n}}} \left(\mathrm{1}−\frac{\mathrm{x}}{\sqrt{\mathrm{n}}}\right)^{\sqrt{\mathrm{2n}}} \:\mathrm{arctan}\left(\frac{\pi\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx} \\ $$

Question Number 119835    Answers: 2   Comments: 1

If M and m are respectively the largest and the smallest integers that satisfying the inequality 6n^2 −5n≤99, find the value of M−m.

$$\mathrm{If}\:{M}\:\mathrm{and}\:{m}\:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{satisfying}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\mathrm{6}{n}^{\mathrm{2}} −\mathrm{5}{n}\leqslant\mathrm{99},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${M}−{m}. \\ $$

Question Number 119832    Answers: 0   Comments: 0

evaluate: I = ∫_0 ^( 1) (((x+1)/x))^(x!) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)^{{x}!} {dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 119831    Answers: 0   Comments: 1

evaluate: I = ∫_1 ^( ∞) ((1/x))^x dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:{I}\:\:=\:\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\mathrm{1}}{{x}}\right)^{{x}} {dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 119812    Answers: 2   Comments: 0

Question Number 119808    Answers: 2   Comments: 0

f^(−1) (x)=3x^2 +2x f(8)=?

$${f}^{−\mathrm{1}} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$${f}\left(\mathrm{8}\right)=? \\ $$

Question Number 119807    Answers: 1   Comments: 0

Let f be a real-valued function defined on the inte- rval [−1, 1]. If the area of the equilateral triangle with (0, 0) and (x, f(x)) as two vertices is (√3)/4, then f(x) is equal to (A) (√(1−x^2 )) (B) (√(1+x^2 )) (C) −(√(1−x^2 )) (D) −(√(1+x^2 ))

$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}-\mathrm{valued}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inte}- \\ $$$$\mathrm{rval}\:\left[−\mathrm{1},\:\mathrm{1}\right].\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\left(\mathrm{0},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{x},\:{f}\left(\mathrm{x}\right)\right)\:\mathrm{as}\:\mathrm{two}\:\mathrm{vertices}\:\mathrm{is}\:\sqrt{\mathrm{3}}/\mathrm{4},\:\mathrm{then}\:{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{C}\right)\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 119803    Answers: 1   Comments: 0

Question Number 119802    Answers: 2   Comments: 0

Given a,b,c real number and not equal to 1. If log _a (b)+log _b (c)+log _c (a)=0 then (log _a (b))^3 +(log _b (c))^3 +(log _c (a))^3 =?

$${Given}\:{a},{b},{c}\:{real}\:{number}\:{and}\:{not}\:{equal}\:{to}\:\mathrm{1}. \\ $$$${If}\:\mathrm{log}\:_{{a}} \left({b}\right)+\mathrm{log}\:_{{b}} \left({c}\right)+\mathrm{log}\:_{{c}} \left({a}\right)=\mathrm{0}\:{then}\: \\ $$$$\left(\mathrm{log}\:_{{a}} \left({b}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{b}} \left({c}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{c}} \left({a}\right)\right)^{\mathrm{3}} =? \\ $$

Question Number 119800    Answers: 0   Comments: 2

Examples of functions such that f(x+y)=f(x)+f(y) for all x,y∈R

$$\mathrm{Examples}\:\mathrm{of}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left(\mathrm{x}+\mathrm{y}\right)={f}\left(\mathrm{x}\right)+{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\in\mathbb{R} \\ $$

Question Number 119801    Answers: 0   Comments: 0

If f:R→R is a function such that f(0)=1 and f(x+f(y))= f(x)+y for all x, y∈R, then (A) 1 is a period of f (B) f(n)=1 for all integers n (C) f(n)=n for all integers n (D) f(−1)=0

$$\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}\left(\mathrm{x}+{f}\left(\mathrm{y}\right)\right)= \\ $$$${f}\left(\mathrm{x}\right)+\mathrm{y}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\:\mathrm{y}\in\mathbb{R},\:\mathrm{then} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f} \\ $$$$\left(\mathrm{B}\right)\:{f}\left({n}\right)=\mathrm{1}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{C}\right)\:{f}\left({n}\right)={n}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{f}\left(−\mathrm{1}\right)=\mathrm{0} \\ $$

Question Number 119797    Answers: 0   Comments: 0

Q1 Let M_2 be the set of square matrices of order 2 over the real number system and R={(A,B)∈M_2 ×M_2 ∣A=P^( T) BP for some non-singular P ∈M} Then R is (A) symmetric (B) transitive (C) reflexive on M_2 (D) not an equivalence relation on M_2 Q2 For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{Q1} \\ $$$$\mathrm{Let}\:{M}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{square}\:\mathrm{matrices}\:\mathrm{of}\:\mathrm{order}\:\mathrm{2}\:\mathrm{over} \\ $$$$\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{system}\:\mathrm{and} \\ $$$$\:\:\:\:\:\mathcal{R}=\left\{\left({A},{B}\right)\in{M}_{\mathrm{2}} ×{M}_{\mathrm{2}} \mid{A}={P}^{\:\mathrm{T}} {BP}\:\:\mathrm{for}\:\mathrm{some}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{non}-\mathrm{singular}\:{P}\:\in{M}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{reflexive}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{not}\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Q2} \\ $$$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119795    Answers: 4   Comments: 0

Solve in real numbers the system of equations { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

$${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{system}\:{of} \\ $$$${equations}\:\begin{cases}{\left(\mathrm{3}{x}+{y}\right)\left({x}+\mathrm{3}{y}\right)\sqrt{{xy}}\:=\mathrm{14}}\\{\left({x}+{y}\right)\left({x}^{\mathrm{2}} +\mathrm{14}{xy}+{y}^{\mathrm{2}} \right)=\:\mathrm{36}}\end{cases}\: \\ $$

Question Number 119790    Answers: 2   Comments: 0

Let x,y,z be nonnegative real numbers, which satisfy x+y+z=1 Find minimum value of Q=(√(2−x)) + (√(2−y)) + (√(2−z)) .

$${Let}\:{x},{y},{z}\:{be}\:{nonnegative}\:{real} \\ $$$${numbers},\:{which}\:{satisfy}\:{x}+{y}+{z}=\mathrm{1} \\ $$$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$${Q}=\sqrt{\mathrm{2}−{x}}\:+\:\sqrt{\mathrm{2}−{y}}\:+\:\sqrt{\mathrm{2}−{z}}\:. \\ $$

Question Number 119784    Answers: 2   Comments: 0

∫ (dx/( (√((4x−x^2 )^3 ))))

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$$ \\ $$

Question Number 119774    Answers: 1   Comments: 0

Question Number 119773    Answers: 3   Comments: 0

∫_(−4) ^4 x^3 (√(16−x^2 )) sec x dx

$$\underset{−\mathrm{4}} {\overset{\mathrm{4}} {\int}}\:{x}^{\mathrm{3}} \sqrt{\mathrm{16}−{x}^{\mathrm{2}} \:}\:\mathrm{sec}\:{x}\:{dx}\: \\ $$

Question Number 119821    Answers: 3   Comments: 0

∫_(−3) ^0 ((6x−6)/( (√(x^2 −2x+1)))) dx =?

$$\:\underset{−\mathrm{3}} {\overset{\mathrm{0}} {\int}}\:\frac{\mathrm{6}{x}−\mathrm{6}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}}\:{dx}\:=? \\ $$

Question Number 119762    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{x}^{\mathrm{4}} \mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{8}} } \\ $$

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119755    Answers: 0   Comments: 2

Question Number 119754    Answers: 2   Comments: 3

find Σ_(n=1) ^∞ (u_n /(n!)) if u_n =u_(n+1) +u_(n−1)

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}_{{n}} }{{n}!}\:{if}\:\:{u}_{{n}} \:={u}_{{n}+\mathrm{1}} +{u}_{{n}−\mathrm{1}} \\ $$

Question Number 119752    Answers: 1   Comments: 0

find I_λ =∫_0 ^∞ ((ch(1+λcosx))/((x^2 +1)^2 ))dx (λ real >0)

$${find}\:{I}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left(\mathrm{1}+\lambda{cosx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left(\lambda\:{real}\:>\mathrm{0}\right) \\ $$

Question Number 119750    Answers: 1   Comments: 0

Π_(k=1) ^(1019) [((2k)/(2k−1))]=?

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{1019}} {\prod}}\left[\frac{\mathrm{2k}}{\mathrm{2k}−\mathrm{1}}\right]=? \\ $$

Question Number 119747    Answers: 1   Comments: 0

Suppose that 7 blue balls , 8 red balls and 9 green balls should be put into three boxes labeled 1,2 and 3, so that any box contains at least one balls of each colour. How many ways can this arrangement be done?

$${Suppose}\:{that}\:\mathrm{7}\:{blue}\:{balls}\:,\:\mathrm{8}\:{red}\:{balls}\:{and}\:\mathrm{9}\:{green} \\ $$$${balls}\:{should}\:{be}\:{put}\:{into}\:{three}\:{boxes}\:{labeled} \\ $$$$\mathrm{1},\mathrm{2}\:{and}\:\mathrm{3},\:{so}\:{that}\:{any}\:{box}\:{contains}\:{at}\:{least} \\ $$$${one}\:{balls}\:{of}\:{each}\:{colour}.\:{How}\:{many}\:{ways} \\ $$$${can}\:{this}\:{arrangement}\:{be}\:{done}? \\ $$

  Pg 990      Pg 991      Pg 992      Pg 993      Pg 994      Pg 995      Pg 996      Pg 997      Pg 998      Pg 999   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com