Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 995

Question Number 120554    Answers: 0   Comments: 0

Prove that for all a>0 ∫_([−a;a]) arg(Γ((1/2) −ix))dx =0 Deduce that f: x→arg(Γ((1/2) −ix)) is an old function on R

$${Prove}\:{that}\:{for}\:{all}\:\:{a}>\mathrm{0} \\ $$$$\int_{\left[−{a};{a}\right]} {arg}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\:−{ix}\right)\right){dx}\:=\mathrm{0} \\ $$$${Deduce}\:{that}\: \\ $$$${f}:\:{x}\rightarrow{arg}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\:−{ix}\right)\right)\:\:{is}\:{an}\:{old}\:{function}\:{on}\:\mathbb{R} \\ $$

Question Number 120553    Answers: 1   Comments: 0

∫_0 ^∞ ∣Γ((1/2) −ix)∣^2 dx = (π/2)

$$\:\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\infty} \mid\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\:−{ix}\right)\mid^{\mathrm{2}} {dx}\:=\:\frac{\pi}{\mathrm{2}}\: \\ $$

Question Number 120552    Answers: 0   Comments: 0

evaluate: ∫_0 ^( ∞) ((x/(x+1)))^(x!) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\mathrm{evaluate}:\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{x}!} {dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 120551    Answers: 1   Comments: 0

(1/( (√3)−tan x)) − (1/( (√3)+tan x)) = sin 2x

$$\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{tan}\:\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{tan}\:\mathrm{x}}\:=\:\mathrm{sin}\:\mathrm{2x} \\ $$

Question Number 120549    Answers: 3   Comments: 0

Question Number 120545    Answers: 1   Comments: 2

((√x))^(x/( (√x))) = (1/( (√2))) x=?

$$\left(\sqrt{\boldsymbol{{x}}}\right)^{\frac{\boldsymbol{{x}}}{\:\sqrt{\boldsymbol{{x}}}}} \:=\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\boldsymbol{{x}}=? \\ $$

Question Number 120544    Answers: 1   Comments: 0

∫(1/((cos x)^6 ))=?

$$\int\frac{\mathrm{1}}{\left(\mathrm{cos}\:{x}\right)^{\mathrm{6}} }=? \\ $$

Question Number 120542    Answers: 0   Comments: 0

Question Number 120541    Answers: 1   Comments: 0

Question Number 120534    Answers: 2   Comments: 1

Question Number 120531    Answers: 1   Comments: 1

Question Number 120529    Answers: 1   Comments: 1

Question Number 120528    Answers: 0   Comments: 0

Let a>0 , g(x)=Σ_(n∈Z) exp(−(((x−n)^2 )/a)) Find the Fourier coefficients of g and deduce that for x∈R^∗ Σ_(n∈Z) exp(−((πn^2 )/x^2 ))= x .Σ_(n∈Z) exp(−πn^2 x^2 )

$${Let}\:\:{a}>\mathrm{0}\:,\:{g}\left({x}\right)=\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\frac{\left({x}−{n}\right)^{\mathrm{2}} }{{a}}\right) \\ $$$${Find}\:{the}\:{Fourier}\:{coefficients}\:{of}\:\:\:{g} \\ $$$${and}\:{deduce}\:{that}\:{for}\:{x}\in\mathbb{R}^{\ast} \\ $$$$\:\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\frac{\pi{n}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)=\:{x}\:.\underset{{n}\in\mathbb{Z}} {\sum}{exp}\left(−\pi{n}^{\mathrm{2}} {x}^{\mathrm{2}} \right) \\ $$$$ \\ $$

Question Number 120524    Answers: 0   Comments: 0

1/.Given E=C([0,1],R) are mapping set [0,1]→R. (a). Show that E is vector space. (b).For f∈E ,let ∣∣f∣∣_1 =∫_0 ^1 ∣f(x)∣dx . Show that (E,∣∣.∣∣_1 ) are normed space. (Helpe me please)

$$\mathrm{1}/.\mathrm{Given}\:\mathrm{E}=\mathrm{C}\left(\left[\mathrm{0},\mathrm{1}\right],\mathbb{R}\right)\:\mathrm{are}\:\mathrm{mapping}\:\mathrm{set}\:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}. \\ $$$$\left(\mathrm{a}\right).\:\mathrm{Show}\:\mathrm{that}\:\mathrm{E}\:\mathrm{is}\:\mathrm{vector}\:\mathrm{space}. \\ $$$$\left(\mathrm{b}\right).\mathrm{For}\:\:\mathrm{f}\in\mathrm{E}\:,\mathrm{let}\:\mid\mid\mathrm{f}\mid\mid_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mid\mathrm{f}\left(\mathrm{x}\right)\mid\mathrm{dx}\:. \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{E},\mid\mid.\mid\mid_{\mathrm{1}} \right)\:\mathrm{are}\:\mathrm{normed}\:\mathrm{space}. \\ $$$$\:\:\left(\mathrm{Helpe}\:\mathrm{me}\:\mathrm{please}\right) \\ $$

Question Number 120519    Answers: 1   Comments: 1

Question Number 120515    Answers: 1   Comments: 0

lim_(x→∞) (3 (2)^(1/(x )) −2.(3)^(1/(x )) )^x ?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{3}\:\sqrt[{{x}\:}]{\mathrm{2}}\:−\mathrm{2}.\sqrt[{{x}\:}]{\mathrm{3}}\:\right)^{{x}} \:? \\ $$

Question Number 120511    Answers: 3   Comments: 0

lim_(x→0) ((√([ sin^(−1) (2x)]^3 ))/(x sin ((√x)))) ?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\left[\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\right]^{\mathrm{3}} }}{{x}\:\mathrm{sin}\:\left(\sqrt{{x}}\right)}\:?\: \\ $$

Question Number 120502    Answers: 2   Comments: 0

It takes Musa 3 days to buid a room while it takes John 4 days. How many days will it takes both of them?

$$\mathrm{It}\:\mathrm{takes}\:\mathrm{Musa}\:\mathrm{3}\:\mathrm{days}\:\mathrm{to}\:\mathrm{buid}\:\mathrm{a}\:\mathrm{room} \\ $$$$\mathrm{while}\:\mathrm{it}\:\mathrm{takes}\:\mathrm{John}\:\mathrm{4}\:\mathrm{days}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{days}\:\mathrm{will}\:\mathrm{it}\:\mathrm{takes}\:\mathrm{both}\:\mathrm{of}\:\mathrm{them}? \\ $$

Question Number 120480    Answers: 4   Comments: 0

show that ∀ n ∈N^∗ Σ_(k=1) ^n k(n−k)=(((n−1)(n+1))/6)

$${show}\:{that}\:\forall\:{n}\:\in\mathbb{N}^{\ast} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left({n}−{k}\right)=\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Question Number 120477    Answers: 2   Comments: 0

Question Number 120475    Answers: 1   Comments: 0

Question Number 120472    Answers: 0   Comments: 0

A=5x23^(−) ^6 show that A≡x−4[7] deduct the value of x for which A is divisible by 7

$${A}=\overline {\mathrm{5}{x}\mathrm{23}}\:^{\mathrm{6}} \:{show}\:{that}\:{A}\equiv{x}−\mathrm{4}\left[\mathrm{7}\right] \\ $$$${deduct}\:{the}\:{value}\:{of}\:{x}\:{for}\:{which}\:{A}\:{is}\: \\ $$$${divisible}\:{by}\:\mathrm{7} \\ $$

Question Number 120471    Answers: 1   Comments: 0

solve in Z x^3 +2x+1≡1[4]

$${solve}\:{in}\:\mathbb{Z}\:{x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1}\equiv\mathrm{1}\left[\mathrm{4}\right] \\ $$

Question Number 120470    Answers: 0   Comments: 0

solve in function of n: 2^n ≡x−4[3] n∈N

$${solve}\:{in}\:{function}\:{of}\:{n}: \\ $$$$\mathrm{2}^{{n}} \equiv{x}−\mathrm{4}\left[\mathrm{3}\right] \\ $$$${n}\in\mathbb{N} \\ $$

Question Number 120469    Answers: 1   Comments: 0

c alculate the rest of the division of 2^n by 3 ; n ∈ N

$${c}\:{alculate}\:{the}\:{rest}\:{of}\:{the}\:{division}\:{of} \\ $$$$\mathrm{2}^{{n}} \:{by}\:\mathrm{3}\:;\:{n}\:\in\:\mathbb{N} \\ $$

Question Number 120468    Answers: 0   Comments: 2

  Pg 990      Pg 991      Pg 992      Pg 993      Pg 994      Pg 995      Pg 996      Pg 997      Pg 998      Pg 999   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com