Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 995

Question Number 120283    Answers: 0   Comments: 0

fond ∫_2 ^∞ ((ln(1+3x^2 ))/(1+x^4 ))dx

$${fond}\:\int_{\mathrm{2}} ^{\infty} \frac{{ln}\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 120275    Answers: 1   Comments: 0

(((3+2 (5)^(1/4) )/(3−2 (5)^(1/4) )))^(1/(4 )) =?

$$\:\sqrt[{\mathrm{4}\:}]{\frac{\mathrm{3}+\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}{\mathrm{3}−\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}}\:=?\: \\ $$

Question Number 120274    Answers: 0   Comments: 0

Question Number 120272    Answers: 0   Comments: 0

ϕ(x)=x^r where x∈[0,+∞[ and 0<r≤1 shown that for any (x,y)∈R_+ ^2 𝛟(x+y)≤𝛟(x)+𝛟(y) please

$$\varphi\left({x}\right)=\boldsymbol{{x}}^{\boldsymbol{{r}}} \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{x}}\in\left[\mathrm{0},+\infty\left[\:\boldsymbol{{and}}\:\mathrm{0}<\boldsymbol{{r}}\leqslant\mathrm{1}\right.\right. \\ $$$${shown}\:{that}\:{for}\:{any}\:\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)\in\mathbb{R}_{+} ^{\mathrm{2}} \\ $$$$\boldsymbol{\varphi}\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)\leqslant\boldsymbol{\varphi}\left(\boldsymbol{{x}}\right)+\boldsymbol{\varphi}\left(\boldsymbol{{y}}\right) \\ $$$$\:\:\:\:\boldsymbol{{please}} \\ $$

Question Number 120268    Answers: 3   Comments: 0

Question Number 120258    Answers: 1   Comments: 0

Question Number 120257    Answers: 2   Comments: 1

∫ ((f ′(x))/(f(x))) =?

$$\:\int\:\frac{{f}\:'\left({x}\right)}{{f}\left({x}\right)}\:=? \\ $$

Question Number 120254    Answers: 4   Comments: 0

∫ (dx/(1+cosθ.cos x )) ?

$$\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{cos}\theta.\mathrm{cos}\:{x}\:}\:? \\ $$

Question Number 120244    Answers: 3   Comments: 2

how to justify that sin (x−((7π)/2) )= cos x

$${how}\:{to}\:{justify}\:\:{that}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\:\right)=\:\mathrm{cos}\:{x} \\ $$

Question Number 120243    Answers: 1   Comments: 0

Question Number 120240    Answers: 1   Comments: 0

$$\rightarrow \\ $$

Question Number 120241    Answers: 0   Comments: 0

Correction to the last assignment (1)(1/(81^(x−2) )) = 27^(1−x) (1/3^(4(x−2)) )=3^(3(1−x)) (1/3^(4x−8) )=3^(3−3x) 3^(−4x+8) =3^(3−3x) −4x+8=3−3x C.L.T −4x+3x=3−8 −x=−5 x=5 (2)9^x =(1/(729)) 9^x =(1/3^6 ) 3^(2x) =3^(−6) 2x=−6 x=((−6)/2) x=−3 (3)16^x =0.125 2^(4x) =((125)/(1000)) 2^(4x) =(1/8) 2^(4x) =2^(−3) 4x=−3 x=((−3)/4) (4)a^(1/2) =4 a=

$$\boldsymbol{\mathrm{C}}{orrection}\:\boldsymbol{{to}}\:\boldsymbol{{the}}\:\boldsymbol{{last}}\:\boldsymbol{{assignment}} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{1}}{\mathrm{81}^{\boldsymbol{{x}}−\mathrm{2}} }\:=\:\mathrm{27}^{\mathrm{1}−\boldsymbol{{x}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\left(\boldsymbol{{x}}−\mathrm{2}\right)} }=\mathrm{3}^{\mathrm{3}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\boldsymbol{{x}}−\mathrm{8}} }=\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$\mathrm{3}^{−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}} =\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}=\mathrm{3}−\mathrm{3}\boldsymbol{{x}} \\ $$$$\boldsymbol{{C}}.{L}.{T} \\ $$$$−\mathrm{4}{x}+\mathrm{3}{x}=\mathrm{3}−\mathrm{8} \\ $$$$−{x}=−\mathrm{5} \\ $$$${x}=\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{729}} \\ $$$$\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} } \\ $$$$\mathrm{3}^{\mathrm{2}{x}} =\mathrm{3}^{−\mathrm{6}} \\ $$$$\mathrm{2}{x}=−\mathrm{6} \\ $$$${x}=\frac{−\mathrm{6}}{\mathrm{2}} \\ $$$${x}=−\mathrm{3} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\mathrm{16}^{{x}} =\mathrm{0}.\mathrm{125} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{125}}{\mathrm{1000}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\mathrm{2}^{−\mathrm{3}} \\ $$$$\mathrm{4}{x}=−\mathrm{3} \\ $$$${x}=\frac{−\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$$$\left(\mathrm{4}\right){a}^{\mathrm{1}/\mathrm{2}} =\mathrm{4} \\ $$$${a}= \\ $$

Question Number 120238    Answers: 0   Comments: 0

Question Number 120233    Answers: 0   Comments: 0

$$ \\ $$

Question Number 120237    Answers: 0   Comments: 1

Question Number 120230    Answers: 3   Comments: 0

∫ (x^3 /((x +2)^4 )) dx OR ∫ ((cos x)/(1 + cos x)) dx a^→ = i^ − j^ + 3k^ and b^(→ ) = 2i^ − 7j^ + k^ .

$$\:\:\:\:\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}\:+\mathrm{2}\right)^{\mathrm{4}} }\:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{OR} \\ $$$$\:\:\:\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx} \\ $$$$ \\ $$$$\:\:\:\:\:\overset{\rightarrow} {\mathrm{a}}\:=\:\hat {\mathrm{i}}\:−\:\hat {\mathrm{j}}\:+\:\mathrm{3}\hat {\mathrm{k}}\:\:\mathrm{and}\:\overset{\rightarrow\:} {\mathrm{b}}\:=\:\mathrm{2}\hat {\mathrm{i}}\:−\:\mathrm{7}\hat {\mathrm{j}}\:+\:\hat {\mathrm{k}}\:. \\ $$$$ \\ $$$$\:\:\:\: \\ $$

Question Number 120229    Answers: 2   Comments: 0

Question Number 120228    Answers: 0   Comments: 0

Please solve using special function like LambertW function or any other function (if possibe) ((8/7))^x +17^x =25x

$${Please}\:{solve}\:{using}\:{special}\:{function}\:{like}\:{LambertW} \\ $$$${function}\:{or}\:{any}\:{other}\:{function}\:\left({if}\:{possibe}\right) \\ $$$$\left(\frac{\mathrm{8}}{\mathrm{7}}\right)^{{x}} +\mathrm{17}^{{x}} =\mathrm{25}{x} \\ $$

Question Number 120225    Answers: 0   Comments: 0

Question Number 120215    Answers: 1   Comments: 0

Prove that (((((a+b)(b+c)(c+a))/8) ))^(1/3) ≥ (√((ab+bc+ca)/3)) for a,b,c > 0

$${Prove}\:{that}\:\sqrt[{\mathrm{3}}]{\frac{\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)}{\mathrm{8}}\:}\:\geqslant\:\sqrt{\frac{{ab}+{bc}+{ca}}{\mathrm{3}}} \\ $$$${for}\:{a},{b},{c}\:>\:\mathrm{0} \\ $$

Question Number 120211    Answers: 3   Comments: 0

evaluate lim_(x→∞) f(x) and lim_(x→−∞) f(x) for f(x)=(x/( (√(x^2 +1)))).

$$\:{evaluate}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)\:{and}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right) \\ $$$${for}\:{f}\left({x}\right)=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}. \\ $$

Question Number 120209    Answers: 1   Comments: 0

Peter has 12 relatives (5 man & 7 woman) and his wife also has 12 relatives (5 woman &7 man). They do not have common relatives. They decided to invite 12 guests ,six each of their relatives, such that there are six man and six woman among the guests. How many ways can they choose 12 guests?

$${Peter}\:{has}\:\mathrm{12}\:{relatives}\:\left(\mathrm{5}\:{man}\:\&\:\mathrm{7}\:{woman}\right) \\ $$$${and}\:{his}\:{wife}\:{also}\:{has}\:\mathrm{12}\:{relatives} \\ $$$$\left(\mathrm{5}\:{woman}\:\&\mathrm{7}\:{man}\right).\:{They}\:{do}\:{not} \\ $$$${have}\:{common}\:{relatives}.\:{They}\:{decided} \\ $$$${to}\:{invite}\:\mathrm{12}\:{guests}\:,{six}\:{each}\:{of} \\ $$$${their}\:{relatives},\:{such}\:{that}\:{there} \\ $$$${are}\:{six}\:{man}\:{and}\:{six}\:{woman}\: \\ $$$${among}\:{the}\:{guests}.\:{How}\:{many} \\ $$$${ways}\:{can}\:{they}\:{choose}\:\mathrm{12}\:{guests}? \\ $$

Question Number 120207    Answers: 0   Comments: 0

Question Number 120206    Answers: 0   Comments: 0

Find the remainder when 1×3×5×7×…×2017×2019 is divided by 1000.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\: \\ $$$$\mathrm{1}×\mathrm{3}×\mathrm{5}×\mathrm{7}×\ldots×\mathrm{2017}×\mathrm{2019}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{1000}. \\ $$

Question Number 120204    Answers: 0   Comments: 2

Call a 7−digit telephone number d_1 d_2 d_3 −d_4 d_5 d_6 d_7 memorable if the prefix sequence d_1 d_2 d_3 is exactly the same as either of the sequences d_4 d_5 d_6 or d_5 d_6 d_7 (posibly both). Assuming that each d_i can be any of the ten decimal digits 0,1,2,...,9 . Find the number of different memorable telephone numbers

$${Call}\:{a}\:\mathrm{7}−{digit}\:{telephone}\:{number}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} −{d}_{\mathrm{4}} {d}_{\mathrm{5}} {d}_{\mathrm{6}} {d}_{\mathrm{7}} \\ $$$${memorable}\:{if}\:{the}\:{prefix}\:{sequence}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} \\ $$$${is}\:{exactly}\:{the}\:{same}\:{as}\:{either}\:{of}\:{the}\:{sequences} \\ $$$${d}_{\mathrm{4}} {d}_{\mathrm{5}} {d}_{\mathrm{6}} \:{or}\:{d}_{\mathrm{5}} {d}_{\mathrm{6}} {d}_{\mathrm{7}} \:\left({posibly}\:{both}\right). \\ $$$${Assuming}\:{that}\:{each}\:{d}_{{i}} \:{can}\:{be}\:{any}\:{of}\:{the}\:{ten} \\ $$$${decimal}\:{digits}\:\mathrm{0},\mathrm{1},\mathrm{2},...,\mathrm{9}\:.\:{Find}\:{the}\:{number} \\ $$$${of}\:{different}\:{memorable}\:{telephone} \\ $$$${numbers} \\ $$

Question Number 120202    Answers: 0   Comments: 0

Show for the equation a^n = b^2 −1 where n>1 and a>2 are any natural numbers , there are no positive integer solutions for a and b ?

$${Show}\:{for}\:{the}\:{equation}\:{a}^{{n}} \:=\:{b}^{\mathrm{2}} −\mathrm{1}\: \\ $$$${where}\:{n}>\mathrm{1}\:{and}\:{a}>\mathrm{2}\:{are}\:{any}\:{natural} \\ $$$${numbers}\:,\:{there}\:{are}\:{no}\:{positive}\:{integer} \\ $$$${solutions}\:{for}\:{a}\:{and}\:{b}\:? \\ $$

  Pg 990      Pg 991      Pg 992      Pg 993      Pg 994      Pg 995      Pg 996      Pg 997      Pg 998      Pg 999   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com