Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 995
Question Number 120312 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...\:\clubsuit{nice}\:\:{calculus}\clubsuit... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \frac{\sqrt[{{n}^{\mathrm{2}} }]{{n\$}}}{\:\sqrt{{n}}}?\overset{???} {=}{e}^{\frac{−\mathrm{3}}{\mathrm{4}}} \\ $$$$\:\:\:\:\:{where}\:::\:\:{n\$}\:\overset{{superfactorial}} {=}{n}!.\left({n}−\mathrm{1}\right)!.\left({n}−\mathrm{2}\right)!...\mathrm{3}!.\mathrm{2}!.\mathrm{1}! \\ $$$$\:\:\:\:\:\:\:\:...\spadesuit{m}.{n}.\mathrm{1970}\spadesuit... \\ $$
Question Number 120526 Answers: 0 Comments: 1
Question Number 120301 Answers: 1 Comments: 3
$${is}\:{it}\:{possible}\:{to}\:{have}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{4}} }\right)\:{please}\:{help} \\ $$
Question Number 120300 Answers: 0 Comments: 1
$${Determine}\:{all}\:{function}\:{f}:{R}\rightarrow{R} \\ $$$${which}\:{satisfy}\:{f}\left({a}+{x}\right)−{f}\left({a}−{x}\right)=\mathrm{4}{ax} \\ $$$${for}\:{all}\:{real}\:{a}\:{and}\:{x}. \\ $$
Question Number 120297 Answers: 3 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{{x}\:{dx}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}} \\ $$
Question Number 120295 Answers: 1 Comments: 1
Question Number 120288 Answers: 1 Comments: 1
$${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$${determine}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$${and}\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 120285 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{2}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)} \\ $$
Question Number 120284 Answers: 1 Comments: 1
Question Number 120283 Answers: 0 Comments: 0
$${fond}\:\int_{\mathrm{2}} ^{\infty} \frac{{ln}\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Question Number 120275 Answers: 1 Comments: 0
$$\:\sqrt[{\mathrm{4}\:}]{\frac{\mathrm{3}+\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}{\mathrm{3}−\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}}\:=?\: \\ $$
Question Number 120274 Answers: 0 Comments: 0
Question Number 120272 Answers: 0 Comments: 0
$$\varphi\left({x}\right)=\boldsymbol{{x}}^{\boldsymbol{{r}}} \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{x}}\in\left[\mathrm{0},+\infty\left[\:\boldsymbol{{and}}\:\mathrm{0}<\boldsymbol{{r}}\leqslant\mathrm{1}\right.\right. \\ $$$${shown}\:{that}\:{for}\:{any}\:\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)\in\mathbb{R}_{+} ^{\mathrm{2}} \\ $$$$\boldsymbol{\varphi}\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)\leqslant\boldsymbol{\varphi}\left(\boldsymbol{{x}}\right)+\boldsymbol{\varphi}\left(\boldsymbol{{y}}\right) \\ $$$$\:\:\:\:\boldsymbol{{please}} \\ $$
Question Number 120268 Answers: 3 Comments: 0
Question Number 120258 Answers: 1 Comments: 0
Question Number 120257 Answers: 2 Comments: 1
$$\:\int\:\frac{{f}\:'\left({x}\right)}{{f}\left({x}\right)}\:=? \\ $$
Question Number 120254 Answers: 4 Comments: 0
$$\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{cos}\theta.\mathrm{cos}\:{x}\:}\:? \\ $$
Question Number 120244 Answers: 3 Comments: 2
$${how}\:{to}\:{justify}\:\:{that}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\:\right)=\:\mathrm{cos}\:{x} \\ $$
Question Number 120243 Answers: 1 Comments: 0
Question Number 120240 Answers: 1 Comments: 0
$$\rightarrow \\ $$
Question Number 120241 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{C}}{orrection}\:\boldsymbol{{to}}\:\boldsymbol{{the}}\:\boldsymbol{{last}}\:\boldsymbol{{assignment}} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{1}}{\mathrm{81}^{\boldsymbol{{x}}−\mathrm{2}} }\:=\:\mathrm{27}^{\mathrm{1}−\boldsymbol{{x}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\left(\boldsymbol{{x}}−\mathrm{2}\right)} }=\mathrm{3}^{\mathrm{3}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\boldsymbol{{x}}−\mathrm{8}} }=\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$\mathrm{3}^{−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}} =\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}=\mathrm{3}−\mathrm{3}\boldsymbol{{x}} \\ $$$$\boldsymbol{{C}}.{L}.{T} \\ $$$$−\mathrm{4}{x}+\mathrm{3}{x}=\mathrm{3}−\mathrm{8} \\ $$$$−{x}=−\mathrm{5} \\ $$$${x}=\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{729}} \\ $$$$\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} } \\ $$$$\mathrm{3}^{\mathrm{2}{x}} =\mathrm{3}^{−\mathrm{6}} \\ $$$$\mathrm{2}{x}=−\mathrm{6} \\ $$$${x}=\frac{−\mathrm{6}}{\mathrm{2}} \\ $$$${x}=−\mathrm{3} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\mathrm{16}^{{x}} =\mathrm{0}.\mathrm{125} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{125}}{\mathrm{1000}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\mathrm{2}^{−\mathrm{3}} \\ $$$$\mathrm{4}{x}=−\mathrm{3} \\ $$$${x}=\frac{−\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$$$\left(\mathrm{4}\right){a}^{\mathrm{1}/\mathrm{2}} =\mathrm{4} \\ $$$${a}= \\ $$
Question Number 120238 Answers: 0 Comments: 0
Question Number 120233 Answers: 0 Comments: 0
$$ \\ $$
Question Number 120237 Answers: 0 Comments: 1
Question Number 120230 Answers: 3 Comments: 0
$$\:\:\:\:\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}\:+\mathrm{2}\right)^{\mathrm{4}} }\:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{OR} \\ $$$$\:\:\:\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx} \\ $$$$ \\ $$$$\:\:\:\:\:\overset{\rightarrow} {\mathrm{a}}\:=\:\hat {\mathrm{i}}\:−\:\hat {\mathrm{j}}\:+\:\mathrm{3}\hat {\mathrm{k}}\:\:\mathrm{and}\:\overset{\rightarrow\:} {\mathrm{b}}\:=\:\mathrm{2}\hat {\mathrm{i}}\:−\:\mathrm{7}\hat {\mathrm{j}}\:+\:\hat {\mathrm{k}}\:. \\ $$$$ \\ $$$$\:\:\:\: \\ $$
Question Number 120229 Answers: 2 Comments: 0
Pg 990 Pg 991 Pg 992 Pg 993 Pg 994 Pg 995 Pg 996 Pg 997 Pg 998 Pg 999
Terms of Service
Privacy Policy
Contact: info@tinkutara.com