Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 994

Question Number 119852    Answers: 1   Comments: 0

lim_(n→∞) n^2 ∫ _0 ^(1/n) x^(x+1) dx =?

$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}^{\mathrm{2}} \:\int\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{{n}}} {\:}}{x}^{{x}+\mathrm{1}} \:{dx}\:=? \\ $$

Question Number 119849    Answers: 1   Comments: 0

Find all pair(x,y) of real numbers that are the solutions to the system { ((x^4 +2x^3 −y=−(1/4)+(√3))),((y^4 +2y^3 −x=−(1/4)−(√3))) :}

$${Find}\:{all}\:{pair}\left({x},{y}\right)\:{of}\:{real}\:{numbers} \\ $$$${that}\:{are}\:{the}\:{solutions}\:{to}\:{the}\:{system} \\ $$$$\begin{cases}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −{y}=−\frac{\mathrm{1}}{\mathrm{4}}+\sqrt{\mathrm{3}}}\\{{y}^{\mathrm{4}} +\mathrm{2}{y}^{\mathrm{3}} −{x}=−\frac{\mathrm{1}}{\mathrm{4}}−\sqrt{\mathrm{3}}}\end{cases} \\ $$

Question Number 119848    Answers: 1   Comments: 0

Solve in real numbers the equation (x)^(1/(3 )) + ((x−1))^(1/(3 )) + ((x+1))^(1/(3 )) = 0

$${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{equation} \\ $$$$\sqrt[{\mathrm{3}\:}]{{x}}\:+\:\sqrt[{\mathrm{3}\:}]{{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}\:}]{{x}+\mathrm{1}}\:=\:\mathrm{0} \\ $$

Question Number 119839    Answers: 1   Comments: 0

Prove that sin x−cos^2 x+sin^3 x−cos^4 x+sin^5 x−cos^6 x +sin^7 x−cos^8 x+……=(√2)−1

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{3}} {x}−\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{5}} {x}−\mathrm{cos}^{\mathrm{6}} {x} \\ $$$$+\mathrm{sin}^{\mathrm{7}} {x}−\mathrm{cos}^{\mathrm{8}} {x}+\ldots\ldots=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Question Number 119837    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^(√n) (1−(x/(√n)))^(√(2n)) arctan(((πx)/n))dx

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{n}}} \left(\mathrm{1}−\frac{\mathrm{x}}{\sqrt{\mathrm{n}}}\right)^{\sqrt{\mathrm{2n}}} \:\mathrm{arctan}\left(\frac{\pi\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx} \\ $$

Question Number 119835    Answers: 2   Comments: 1

If M and m are respectively the largest and the smallest integers that satisfying the inequality 6n^2 −5n≤99, find the value of M−m.

$$\mathrm{If}\:{M}\:\mathrm{and}\:{m}\:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{satisfying}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\mathrm{6}{n}^{\mathrm{2}} −\mathrm{5}{n}\leqslant\mathrm{99},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${M}−{m}. \\ $$

Question Number 119832    Answers: 0   Comments: 0

evaluate: I = ∫_0 ^( 1) (((x+1)/x))^(x!) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)^{{x}!} {dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 119831    Answers: 0   Comments: 1

evaluate: I = ∫_1 ^( ∞) ((1/x))^x dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:{I}\:\:=\:\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\mathrm{1}}{{x}}\right)^{{x}} {dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 119812    Answers: 2   Comments: 0

Question Number 119808    Answers: 2   Comments: 0

f^(−1) (x)=3x^2 +2x f(8)=?

$${f}^{−\mathrm{1}} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$${f}\left(\mathrm{8}\right)=? \\ $$

Question Number 119807    Answers: 1   Comments: 0

Let f be a real-valued function defined on the inte- rval [−1, 1]. If the area of the equilateral triangle with (0, 0) and (x, f(x)) as two vertices is (√3)/4, then f(x) is equal to (A) (√(1−x^2 )) (B) (√(1+x^2 )) (C) −(√(1−x^2 )) (D) −(√(1+x^2 ))

$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}-\mathrm{valued}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inte}- \\ $$$$\mathrm{rval}\:\left[−\mathrm{1},\:\mathrm{1}\right].\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\left(\mathrm{0},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{x},\:{f}\left(\mathrm{x}\right)\right)\:\mathrm{as}\:\mathrm{two}\:\mathrm{vertices}\:\mathrm{is}\:\sqrt{\mathrm{3}}/\mathrm{4},\:\mathrm{then}\:{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{C}\right)\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 119803    Answers: 1   Comments: 0

Question Number 119802    Answers: 2   Comments: 0

Given a,b,c real number and not equal to 1. If log _a (b)+log _b (c)+log _c (a)=0 then (log _a (b))^3 +(log _b (c))^3 +(log _c (a))^3 =?

$${Given}\:{a},{b},{c}\:{real}\:{number}\:{and}\:{not}\:{equal}\:{to}\:\mathrm{1}. \\ $$$${If}\:\mathrm{log}\:_{{a}} \left({b}\right)+\mathrm{log}\:_{{b}} \left({c}\right)+\mathrm{log}\:_{{c}} \left({a}\right)=\mathrm{0}\:{then}\: \\ $$$$\left(\mathrm{log}\:_{{a}} \left({b}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{b}} \left({c}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{c}} \left({a}\right)\right)^{\mathrm{3}} =? \\ $$

Question Number 119800    Answers: 0   Comments: 2

Examples of functions such that f(x+y)=f(x)+f(y) for all x,y∈R

$$\mathrm{Examples}\:\mathrm{of}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left(\mathrm{x}+\mathrm{y}\right)={f}\left(\mathrm{x}\right)+{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\in\mathbb{R} \\ $$

Question Number 119801    Answers: 0   Comments: 0

If f:R→R is a function such that f(0)=1 and f(x+f(y))= f(x)+y for all x, y∈R, then (A) 1 is a period of f (B) f(n)=1 for all integers n (C) f(n)=n for all integers n (D) f(−1)=0

$$\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}\left(\mathrm{x}+{f}\left(\mathrm{y}\right)\right)= \\ $$$${f}\left(\mathrm{x}\right)+\mathrm{y}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\:\mathrm{y}\in\mathbb{R},\:\mathrm{then} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f} \\ $$$$\left(\mathrm{B}\right)\:{f}\left({n}\right)=\mathrm{1}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{C}\right)\:{f}\left({n}\right)={n}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{f}\left(−\mathrm{1}\right)=\mathrm{0} \\ $$

Question Number 119797    Answers: 0   Comments: 0

Q1 Let M_2 be the set of square matrices of order 2 over the real number system and R={(A,B)∈M_2 ×M_2 ∣A=P^( T) BP for some non-singular P ∈M} Then R is (A) symmetric (B) transitive (C) reflexive on M_2 (D) not an equivalence relation on M_2 Q2 For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{Q1} \\ $$$$\mathrm{Let}\:{M}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{square}\:\mathrm{matrices}\:\mathrm{of}\:\mathrm{order}\:\mathrm{2}\:\mathrm{over} \\ $$$$\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{system}\:\mathrm{and} \\ $$$$\:\:\:\:\:\mathcal{R}=\left\{\left({A},{B}\right)\in{M}_{\mathrm{2}} ×{M}_{\mathrm{2}} \mid{A}={P}^{\:\mathrm{T}} {BP}\:\:\mathrm{for}\:\mathrm{some}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{non}-\mathrm{singular}\:{P}\:\in{M}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{reflexive}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{not}\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Q2} \\ $$$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119795    Answers: 4   Comments: 0

Solve in real numbers the system of equations { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

$${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{system}\:{of} \\ $$$${equations}\:\begin{cases}{\left(\mathrm{3}{x}+{y}\right)\left({x}+\mathrm{3}{y}\right)\sqrt{{xy}}\:=\mathrm{14}}\\{\left({x}+{y}\right)\left({x}^{\mathrm{2}} +\mathrm{14}{xy}+{y}^{\mathrm{2}} \right)=\:\mathrm{36}}\end{cases}\: \\ $$

Question Number 119790    Answers: 2   Comments: 0

Let x,y,z be nonnegative real numbers, which satisfy x+y+z=1 Find minimum value of Q=(√(2−x)) + (√(2−y)) + (√(2−z)) .

$${Let}\:{x},{y},{z}\:{be}\:{nonnegative}\:{real} \\ $$$${numbers},\:{which}\:{satisfy}\:{x}+{y}+{z}=\mathrm{1} \\ $$$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$${Q}=\sqrt{\mathrm{2}−{x}}\:+\:\sqrt{\mathrm{2}−{y}}\:+\:\sqrt{\mathrm{2}−{z}}\:. \\ $$

Question Number 119784    Answers: 2   Comments: 0

∫ (dx/( (√((4x−x^2 )^3 ))))

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$$ \\ $$

Question Number 119774    Answers: 1   Comments: 0

Question Number 119773    Answers: 3   Comments: 0

∫_(−4) ^4 x^3 (√(16−x^2 )) sec x dx

$$\underset{−\mathrm{4}} {\overset{\mathrm{4}} {\int}}\:{x}^{\mathrm{3}} \sqrt{\mathrm{16}−{x}^{\mathrm{2}} \:}\:\mathrm{sec}\:{x}\:{dx}\: \\ $$

Question Number 119821    Answers: 3   Comments: 0

∫_(−3) ^0 ((6x−6)/( (√(x^2 −2x+1)))) dx =?

$$\:\underset{−\mathrm{3}} {\overset{\mathrm{0}} {\int}}\:\frac{\mathrm{6}{x}−\mathrm{6}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}}\:{dx}\:=? \\ $$

Question Number 119762    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{x}^{\mathrm{4}} \mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{8}} } \\ $$

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119755    Answers: 0   Comments: 2

Question Number 119754    Answers: 2   Comments: 3

find Σ_(n=1) ^∞ (u_n /(n!)) if u_n =u_(n+1) +u_(n−1)

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}_{{n}} }{{n}!}\:{if}\:\:{u}_{{n}} \:={u}_{{n}+\mathrm{1}} +{u}_{{n}−\mathrm{1}} \\ $$

  Pg 989      Pg 990      Pg 991      Pg 992      Pg 993      Pg 994      Pg 995      Pg 996      Pg 997      Pg 998   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com