Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 994

Question Number 120773    Answers: 1   Comments: 0

Question Number 120768    Answers: 0   Comments: 0

Question Number 120769    Answers: 2   Comments: 0

1).x^2 −5=(√(13+x)) ,Find x=? 2).x^3 +3x^2 −x−4=0 ,Find x=?

$$\left.\mathrm{1}\right).\mathrm{x}^{\mathrm{2}} −\mathrm{5}=\sqrt{\mathrm{13}+\mathrm{x}}\:\:,\mathrm{Find}\:\mathrm{x}=? \\ $$$$\left.\mathrm{2}\right).\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} −\mathrm{x}−\mathrm{4}=\mathrm{0}\:\:,\mathrm{Find}\:\mathrm{x}=? \\ $$

Question Number 120761    Answers: 1   Comments: 0

∫ tan^(−1) ((√((1−x)/(1+x))) ) dx ?

$$\:\:\:\:\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}}\:\right)\:\mathrm{dx}\:? \\ $$

Question Number 120758    Answers: 3   Comments: 0

∫ (dx/(a sin x + b cos x))

$$\:\int\:\frac{\mathrm{dx}}{{a}\:\mathrm{sin}\:\mathrm{x}\:+\:{b}\:\mathrm{cos}\:\mathrm{x}} \\ $$

Question Number 120755    Answers: 0   Comments: 0

Question Number 120748    Answers: 2   Comments: 0

Question Number 120745    Answers: 1   Comments: 0

Question Number 120729    Answers: 1   Comments: 0

Question Number 120727    Answers: 1   Comments: 0

Question Number 120724    Answers: 1   Comments: 2

Question Number 120721    Answers: 2   Comments: 2

Question Number 120720    Answers: 2   Comments: 0

Given lim_(x→∞) (√(x+2(√x)+3)) −(√x)+b = 4 find the value of b^2 +1

$$\:\mathrm{Given}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{x}+\mathrm{2}\sqrt{\mathrm{x}}+\mathrm{3}}\:−\sqrt{\mathrm{x}}+\mathrm{b}\:=\:\mathrm{4} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{b}^{\mathrm{2}} +\mathrm{1} \\ $$

Question Number 120715    Answers: 0   Comments: 0

Question Number 120711    Answers: 3   Comments: 0

show that 1+2+3+4...=((−1)/8)

$${show}\:{that}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}...=\frac{−\mathrm{1}}{\mathrm{8}} \\ $$

Question Number 120706    Answers: 0   Comments: 1

If f(x)=x^4 +ax^3 +bx^2 +cx+d f(1)=5, f(2)=10, f(3)=15 find f(9)+f(−5).

$$\mathrm{If}\:{f}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{5},\:{f}\left(\mathrm{2}\right)=\mathrm{10},\:{f}\left(\mathrm{3}\right)=\mathrm{15} \\ $$$$\mathrm{find}\:{f}\left(\mathrm{9}\right)+{f}\left(−\mathrm{5}\right). \\ $$

Question Number 120705    Answers: 0   Comments: 1

Given that the curve y=2x^2 −19x+18 does not intersect the line y=x+k, find the largest integer of k.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{curve}\:{y}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{18} \\ $$$$\mathrm{does}\:\mathrm{not}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{line}\:{y}={x}+{k}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{integer}\:\mathrm{of}\:{k}. \\ $$

Question Number 120703    Answers: 1   Comments: 0

∫ (dx/(x^2 (√(9+x^2 )))) ?

$$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{9}+\mathrm{x}^{\mathrm{2}} }}\:? \\ $$

Question Number 120702    Answers: 0   Comments: 0

Question Number 120688    Answers: 1   Comments: 0

∫_0 ^π ((x dx)/(1+sin^2 x))

$$\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\: \\ $$$$ \\ $$

Question Number 120686    Answers: 3   Comments: 0

lim_(x→0) ((sin x−tan x)/x^3 ) ?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:? \\ $$

Question Number 120679    Answers: 2   Comments: 3

h

$${h} \\ $$

Question Number 120676    Answers: 0   Comments: 4

Question Number 120654    Answers: 2   Comments: 0

∫_0 ^∞ (dx/([x+(√(1+x^2 )) ]^n ))

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\left[\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right]^{\mathrm{n}} } \\ $$

Question Number 120636    Answers: 0   Comments: 23

selective Binomial

$${selective}\:{Binomial} \\ $$

Question Number 120631    Answers: 1   Comments: 0

  Pg 989      Pg 990      Pg 991      Pg 992      Pg 993      Pg 994      Pg 995      Pg 996      Pg 997      Pg 998   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com