let a,b ≥ 0 and a + b + ab = 3
show that;
((38)/(55)) ≤ (1/(a^2 + 2)) + (1/(b^2 +2)) + (1/(a^2 + b^2 + 1)) ≤ 1 ,
((463)/(812)) ≤ (1/(a^3 + 2)) + (1/(b^3 + 2)) + (1/(a^3 + b^3 + 1)) ≤ 1 ,
((193)/(308)) ≤ (1/(a^2 + 2)) + (1/(b^3 + 2)) + (1/(a^3 + b^2 + 1)) ≤1 ,
and
((463)/(812)) ≤ (1/(a^2 + 2)) + (1/(b^3 + 2)) + (1/(a^2 + b^3 + 1)) ≤ ((11)/(10))
|