Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 9

Question Number 208662    Answers: 2   Comments: 0

(( ((n),(0) ) +3 ((n),(1) ) +5 ((n),(2) ) +...+(2n+1) ((n),(n) ))/( ((n),(1) ) +2 ((n),(2) ) + 3 ((n),(3) ) +...+n ((n),(n) ))) =((23)/(11)) n=?

$$\:\:\frac{\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}\:+\mathrm{3}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}\:+\mathrm{5}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{2}}\end{pmatrix}\:+...+\left(\mathrm{2n}+\mathrm{1}\right)\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}}{\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}\:+\mathrm{2}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{2}}\end{pmatrix}\:+\:\mathrm{3}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{3}}\end{pmatrix}\:+...+\mathrm{n}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}}\:=\frac{\mathrm{23}}{\mathrm{11}} \\ $$$$\:\mathrm{n}=? \\ $$

Question Number 208661    Answers: 1   Comments: 0

$$\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 208652    Answers: 1   Comments: 0

Question Number 208647    Answers: 1   Comments: 0

(tan^2 x − 3) ∙ sinx = 0 Find: x = ?

$$\left(\mathrm{tan}^{\mathrm{2}} \boldsymbol{\mathrm{x}}\:−\:\mathrm{3}\right)\:\centerdot\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 208646    Answers: 1   Comments: 0

y = ∣x − 2∣ + ∣x + 4∣ Find: min(y) and max(y)

$$\mathrm{y}\:=\:\mid\mathrm{x}\:−\:\mathrm{2}\mid\:+\:\mid\mathrm{x}\:+\:\mathrm{4}\mid \\ $$$$\mathrm{Find}:\:\:\:\mathrm{min}\left(\mathrm{y}\right)\:\:\:\mathrm{and}\:\:\:\mathrm{max}\left(\mathrm{y}\right) \\ $$

Question Number 208645    Answers: 1   Comments: 0

Solve : 2x_1 − λ_1 − 5λ_2 = 0 2x_2 − λ_1 − 2λ_2 = 0 2x_3 − 3λ_1 − λ_2 = 0 Find the values of x_1 , x_2 , x_3 , λ_1 , and λ_2

$$\mathrm{Solve}\:: \\ $$$$\mathrm{2x}_{\mathrm{1}} \:−\:\lambda_{\mathrm{1}} \:−\:\mathrm{5}\lambda_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{2}} \:−\:\lambda_{\mathrm{1}} \:−\:\mathrm{2}\lambda_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{3}} \:−\:\mathrm{3}\lambda_{\mathrm{1}} \:−\:\lambda_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}_{\mathrm{1}} ,\:\mathrm{x}_{\mathrm{2}} ,\:\mathrm{x}_{\mathrm{3}} ,\:\lambda_{\mathrm{1}} ,\:\mathrm{and}\:\lambda_{\mathrm{2}} \\ $$

Question Number 208639    Answers: 3   Comments: 3

Question Number 208638    Answers: 0   Comments: 0

Question Number 208634    Answers: 0   Comments: 0

Question Number 208632    Answers: 1   Comments: 1

∫e^(−x^2 ) dx could this be integrated by part? What approach would most likely be suitable for this integral?

$$\int{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$${could}\:{this}\:{be}\:{integrated}\:{by}\:{part}?\:{What} \\ $$$${approach}\:{would}\:{most}\:{likely}\:{be}\:{suitable} \\ $$$${for}\:{this}\:{integral}? \\ $$$$ \\ $$

Question Number 208629    Answers: 0   Comments: 0

Question Number 208624    Answers: 1   Comments: 0

Question Number 208623    Answers: 1   Comments: 0

solve for x, 3^x −2^x =65

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x},\:\mathrm{3}^{\mathrm{x}} −\mathrm{2}^{\mathrm{x}} =\mathrm{65} \\ $$

Question Number 208619    Answers: 1   Comments: 0

If O is the othocentre of a ∆ and

If O is the othocentre of a ∆ and <AOC=78°.The measure of <ABC is?

Question Number 208617    Answers: 1   Comments: 0

Question Number 208608    Answers: 2   Comments: 0

Question Number 208594    Answers: 4   Comments: 0

Find x+3^x <4

$${Find} \\ $$$${x}+\mathrm{3}^{{x}} <\mathrm{4} \\ $$

Question Number 208591    Answers: 1   Comments: 0

Question Number 208581    Answers: 1   Comments: 2

Question Number 208569    Answers: 0   Comments: 0

help me to solve this please y′′−(√(1+y′^2 ))=x^2 solve this differential equation

$$\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{please}} \\ $$$$\:\:\boldsymbol{{y}}''−\sqrt{\mathrm{1}+\boldsymbol{{y}}'^{\mathrm{2}} }=\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 208567    Answers: 3   Comments: 0

Question Number 208637    Answers: 3   Comments: 0

s

$$\:\:\:{s} \\ $$

Question Number 208555    Answers: 1   Comments: 0

can you find any arrangement of nine digits of 1−9 such as 967854312 and the first digit should be divisible by 1 thefirst two digitds should be divisible by 2 the first three digitds should be divisible by 3 ...... the number should be fivisible by 9 if is such a number available

$${can}\:{you}\:{find}\:{any}\:{arrangement}\:{of}\:{nine}\:{digits}\:{of}\:\mathrm{1}−\mathrm{9} \\ $$$${such}\:{as}\:\mathrm{967854312} \\ $$$${and}\:{the}\:{first}\:{digit}\:{should}\:{be}\:{divisible}\:{by}\:\mathrm{1} \\ $$$${thefirst}\:{two}\:{digitds}\:{should}\:{be}\:{divisible}\:{by}\:\mathrm{2} \\ $$$${the}\:{first}\:{three}\:{digitds}\:{should}\:{be}\:{divisible}\:{by}\:\mathrm{3}\: \\ $$$$...... \\ $$$${the}\:{number}\:{should}\:{be}\:{fivisible}\:{by}\:\mathrm{9} \\ $$$${if}\:{is}\:{such}\:{a}\:{number}\:{available} \\ $$

Question Number 208554    Answers: 2   Comments: 0

Question Number 208553    Answers: 3   Comments: 0

$$\:\:\:\cancel{ } \\ $$

Question Number 208540    Answers: 2   Comments: 0

  Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com