Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 8

Question Number 224432    Answers: 1   Comments: 4

Question Number 224417    Answers: 1   Comments: 4

Question Number 224413    Answers: 2   Comments: 4

Question Number 224406    Answers: 1   Comments: 0

Question Number 224399    Answers: 1   Comments: 0

Question Number 224398    Answers: 0   Comments: 5

Question Number 224393    Answers: 0   Comments: 2

there is a number when the digits of the number are suffled randomly a new number is generated which is double of the first number The question is what is the smallest number which satisfies the rules??

$${there}\:{is}\:{a}\:{number}\: \\ $$$${when}\:{the}\:{digits}\:{of}\:{the}\:{number} \\ $$$${are}\:{suffled}\:{randomly}\:{a}\:{new} \\ $$$${number}\:{is}\:{generated}\:{which} \\ $$$${is}\:{double}\:{of}\:{the}\:{first}\:{number} \\ $$$${The}\:{question}\:{is} \\ $$$${what}\:{is}\:{the}\:{smallest}\:{number} \\ $$$${which}\:{satisfies}\:{the}\:{rules}?? \\ $$

Question Number 224392    Answers: 2   Comments: 0

−∞<a<b<∞ and 0<λ<1 x_1 = a , x_2 = b x_(n+2) = λx_n + (1−λ)x_(n+1) ∀ n ∈ N find x_(n ) = ?

$$\:\:\:\:\:\:\:−\infty<{a}<{b}<\infty\:\:{and}\:\mathrm{0}<\lambda<\mathrm{1}\:\: \\ $$$$\:\:\:\:\:\:\:{x}_{\mathrm{1}} \:=\:{a}\:,\:{x}_{\mathrm{2}} \:=\:{b} \\ $$$$\:\:\:\:\:\:\:\:{x}_{{n}+\mathrm{2}} \:=\:\lambda{x}_{{n}} \:+\:\left(\mathrm{1}−\lambda\right){x}_{{n}+\mathrm{1}} \:\:\forall\:{n}\:\in\:\mathbb{N} \\ $$$$\:\:\mathrm{find}\:\:{x}_{{n}\:} \:=\:?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 224382    Answers: 0   Comments: 7

Q224176. Sir can this be solved without using trigonometry?? If not can you please show me the way which uses trig.the least??

$${Q}\mathrm{224176}. \\ $$$${Sir}\:{can}\:{this}\:{be}\:{solved}\:{without} \\ $$$${using}\:{trigonometry}?? \\ $$$${If}\:{not}\:{can}\:{you}\:{please}\:{show}\:{me} \\ $$$${the}\:{way}\:{which}\:{uses}\:{trig}.{the}\:{least}?? \\ $$

Question Number 224381    Answers: 0   Comments: 0

Question Number 224380    Answers: 0   Comments: 2

Please some geometry Q Living an inactive live for several days...

$${Please}\:{some}\:{geometry}\:{Q} \\ $$$${Living}\:{an}\:{inactive}\:{live}\:{for} \\ $$$${several}\:{days}... \\ $$

Question Number 224373    Answers: 0   Comments: 0

Show that ; I = ∫_( 0) ^( 1) ∫_( 0) ^( 1) ((ln(1+(√(xy))) ln(1+ (√((1−x)/(1−y)))))/( (√(1−x)) (√(1−y)) (x+y))) dxdy I = ζ(3)−((70)/(351))−((280)/(351)) ln 2−((40)/(117)) ln^2 2 +((412)/(351)) ln^3 2 + ((167)/(2106)) π^2 ln 2

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 224358    Answers: 2   Comments: 1

Question Number 224360    Answers: 1   Comments: 1

Find the equation of the circle which touches the circles x² + y² - 2x + 4y = 1, x² + y² - 12x + 2y = 4 and x² + y² + 2x - 12y + 12 = 0.

Find the equation of the circle which touches the circles x² + y² - 2x + 4y = 1, x² + y² - 12x + 2y = 4 and x² + y² + 2x - 12y + 12 = 0.

Question Number 224342    Answers: 3   Comments: 0

Question Number 224337    Answers: 1   Comments: 0

Question Number 224336    Answers: 2   Comments: 0

Question Number 224335    Answers: 1   Comments: 0

Question Number 224331    Answers: 0   Comments: 0

a,b,c > 0 prove that Σ a^2 ≥ Σ ab + (1/8) Σ (∣a−c∣ + ∣b−c∣)^2

$$\mathrm{a},\mathrm{b},\mathrm{c}\:>\:\mathrm{0} \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\Sigma\:\mathrm{a}^{\mathrm{2}} \:\geqslant\:\Sigma\:\mathrm{ab}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:\Sigma\:\left(\mid\mathrm{a}−\mathrm{c}\mid\:+\:\mid\mathrm{b}−\mathrm{c}\mid\right)^{\mathrm{2}} \\ $$

Question Number 224330    Answers: 0   Comments: 0

recently I read a nice proof to the following problem I know everybody can look it up but if you′re interested in learning something try it by yourself first don′t post the answer you found on the www but post your thoughts instead randomly choose m, n ∈N then what is the probability for gcd (m, n) =1

$$\mathrm{recently}\:\mathrm{I}\:\mathrm{read}\:\mathrm{a}\:\mathrm{nice}\:\mathrm{proof}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{problem} \\ $$$$\mathrm{I}\:\mathrm{know}\:\mathrm{everybody}\:\mathrm{can}\:\mathrm{look}\:\mathrm{it}\:\mathrm{up}\:\mathrm{but}\:\mathrm{if}\:\mathrm{you}'\mathrm{re} \\ $$$$\mathrm{interested}\:\mathrm{in}\:\mathrm{learning}\:\mathrm{something}\:\mathrm{try}\:\mathrm{it}\:\mathrm{by} \\ $$$$\mathrm{yourself}\:\mathrm{first} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{post}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{you}\:\mathrm{found}\:\mathrm{on}\:\mathrm{the} \\ $$$${www}\:\mathrm{but}\:\mathrm{post}\:\mathrm{your}\:\mathrm{thoughts}\:\mathrm{instead} \\ $$$$ \\ $$$$\mathrm{randomly}\:\mathrm{choose}\:{m},\:{n}\:\in\mathbb{N} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{for} \\ $$$$\mathrm{gcd}\:\left({m},\:{n}\right)\:=\mathrm{1} \\ $$

Question Number 224327    Answers: 1   Comments: 1

?

$$\:\: \\ $$$$ \\ $$$$ \\ $$$$ ? \\ $$

Question Number 224325    Answers: 0   Comments: 4

Question Number 224324    Answers: 1   Comments: 0

Question Number 224320    Answers: 1   Comments: 0

Question Number 224316    Answers: 0   Comments: 1

Question Number 224314    Answers: 0   Comments: 1

solve ((1−(√x)))^(1/3) =2

$${solve}\:\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\mathrm{2} \\ $$

  Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com