Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 79

Question Number 209837    Answers: 2   Comments: 0

if the series Σ_(n=1) ^∞ (1/n^2 ) converges to k . find the convergence value of Σ_(n=1) ^∞ (1/((2n+1)^2 ))

$$ \\ $$$${if}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{converges}\:{to}\:{k}\:.\:\:{find}\:\:{the}\:{convergence}\:{value}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 209822    Answers: 0   Comments: 8

A ramp is supported by six pillars and the talleste on measures 6 meters. The distance between eachi pllar is 5 meters. What will be the height of the third pillar?

$$\mathrm{A}\:\mathrm{ramp}\:\mathrm{is}\:\mathrm{supported}\:\mathrm{by}\:\mathrm{six}\:\mathrm{pillars}\:\mathrm{and}\:\mathrm{the}\:\mathrm{talleste} \\ $$$$\mathrm{on}\:\mathrm{measures}\:\mathrm{6}\:\mathrm{meters}.\:\mathrm{The}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{eachi} \\ $$$$\mathrm{pllar}\:\mathrm{is}\:\mathrm{5}\:\mathrm{meters}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{third}\:\mathrm{pillar}?\: \\ $$

Question Number 209813    Answers: 2   Comments: 0

Question Number 209812    Answers: 0   Comments: 0

Question Number 209810    Answers: 1   Comments: 0

lim_( x→0) (( (1+ x )^(1/x) −e)/x) = ?

$$ \\ $$$$\:\:\:\mathrm{lim}_{\:\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\:\left(\mathrm{1}+\:\mathrm{x}\:\right)^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{e}}{\mathrm{x}}\:=\:? \\ $$$$ \\ $$

Question Number 209800    Answers: 1   Comments: 1

Question Number 209794    Answers: 2   Comments: 0

13456622577532674 how many 5-digit numbers can be made from these numbers? help please

$$\:\:\: \\ $$$$\:\:\:\mathrm{13456622577532674}\:{how}\:{many}\:\mathrm{5}-{digit} \\ $$$$\:\:\:{numbers}\:{can}\:{be}\:{made}\:{from}\:{these}\:{numbers}? \\ $$$$\:\:\:{help}\:{please} \\ $$$$ \\ $$

Question Number 209783    Answers: 1   Comments: 0

Question Number 209781    Answers: 2   Comments: 0

((1+sin 40°−cos 40°)/(1+sin 40°+cos 40°)) =?

$$\:\:\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°−\mathrm{cos}\:\mathrm{40}°}{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°+\mathrm{cos}\:\mathrm{40}°}\:=? \\ $$

Question Number 209773    Answers: 0   Comments: 0

Question Number 209768    Answers: 1   Comments: 0

Express tan(3) in surd form

$$\boldsymbol{{Express}}\:\boldsymbol{{tan}}\left(\mathrm{3}\right)\:\boldsymbol{{in}}\:\boldsymbol{{surd}}\:\boldsymbol{{form}} \\ $$

Question Number 209761    Answers: 1   Comments: 0

x^3 −9xy^2 =28 x^2 y−y^3 =15 solve for x and y. x,y∈R

$${x}^{\mathrm{3}} −\mathrm{9}{xy}^{\mathrm{2}} =\mathrm{28} \\ $$$${x}^{\mathrm{2}} {y}−{y}^{\mathrm{3}} =\mathrm{15} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y}. \\ $$$${x},{y}\in\mathbb{R} \\ $$

Question Number 209763    Answers: 1   Comments: 1

Question Number 209746    Answers: 1   Comments: 1

Q)Choose at least some members frome the set A={14,15,...,20,22,23,...,28} so that whith confidence includes three consecutive members?

$$\left.{Q}\right){Choose}\:{at}\:{least}\:{some}\:{members} \\ $$$${frome}\:{the}\:{set}\:{A}=\left\{\mathrm{14},\mathrm{15},...,\mathrm{20},\mathrm{22},\mathrm{23},...,\mathrm{28}\right\} \\ $$$${so}\:{that}\:{whith}\:{confidence}\:\:{includes}\:{three}\:{consecutive} \\ $$$${members}? \\ $$

Question Number 209744    Answers: 4   Comments: 0

Question Number 209735    Answers: 3   Comments: 0

tan(3x) + tan(5x) = 2 Find: x = ?

$$\mathrm{tan}\left(\mathrm{3x}\right)\:\:+\:\:\mathrm{tan}\left(\mathrm{5x}\right)\:\:=\:\:\mathrm{2} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 209732    Answers: 1   Comments: 0

Q) The collection A={12,13,15,18,23,24,25,26}& B⊆A if m,M ∈B ; m=min & M =max & nm=10k which number of B : 1)59 2)60 3)61 4)62

$$\left.{Q}\right)\:{The}\:{collection}\:{A}=\left\{\mathrm{12},\mathrm{13},\mathrm{15},\mathrm{18},\mathrm{23},\mathrm{24},\mathrm{25},\mathrm{26}\right\}\&\:{B}\subseteq{A} \\ $$$${if}\:\:{m},{M}\:\in{B}\:\:;\:{m}={min}\:\&\:{M}\:={max}\:\&\:\:{nm}=\mathrm{10}{k} \\ $$$${which}\:{number}\:{of}\:\:{B}\:: \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{5}\left.\mathrm{9}\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{60}\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{61}\:\:\:\:\:\:\mathrm{4}\right)\mathrm{62} \\ $$$$ \\ $$

Question Number 209719    Answers: 1   Comments: 0

If: 7^(243) = a...bc^(−) Find: b∙c = ?

$$\mathrm{If}: \\ $$$$\mathrm{7}^{\mathrm{243}} \:\:=\:\:\overline {\mathrm{a}...\mathrm{bc}} \\ $$$$\mathrm{Find}: \\ $$$$\mathrm{b}\centerdot\mathrm{c}\:=\:? \\ $$

Question Number 209718    Answers: 1   Comments: 0

Question Number 209712    Answers: 2   Comments: 3

Question Number 209709    Answers: 1   Comments: 0

∫(sinx+cosx)^(11) dx= ? help me please

$$ \\ $$$$\:\:\:\int\left({sinx}+{cosx}\right)^{\mathrm{11}} {dx}=\:? \\ $$$$\:\:\:{help}\:{me}\:{please} \\ $$

Question Number 209707    Answers: 0   Comments: 0

a,b ∈C : ab^− + b = 0 f : z′ = az^− + b such that f(M) = M′ 1. let z_A = z and z_(A′) = z′ and f(A) = A show that 2Re(b^− z) = bb^− (A is the set of invariant points and describes a line (△) ) 2. Deduce that (△) is a line with gradient u^( →) with affix z_u^→ = ib 3. show that (z_(MM ′) /z_u ) = ((bb^− − 2Re(bz^− ))/(ibb^− )) 4. show that 2Re(b^− z_0 ) = bb^_ where z_0 = ((z + z ′)/2) 5. Deduce that for M ∉ (△) , M is a perpendicular bisector of [MM ′]

$${a},{b}\:\in\mathbb{C}\::\:{a}\overset{−} {{b}}\:+\:{b}\:=\:\mathrm{0}\:{f}\::\:{z}'\:=\:{a}\overset{−} {{z}}\:+\:{b}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{such}\:{that}\:{f}\left({M}\right)\:=\:{M}' \\ $$$$\mathrm{1}.\:{let}\:{z}_{{A}} \:=\:{z}\:{and}\:{z}_{{A}'} \:=\:{z}'\:{and}\:{f}\left({A}\right)\:=\:{A} \\ $$$${show}\:{that}\:\mathrm{2}{Re}\left(\overset{−} {{b}z}\right)\:=\:{b}\overset{−} {{b}} \\ $$$$\left({A}\:{is}\:{the}\:{set}\:{of}\:{invariant}\:{points}\:{and}\right. \\ $$$$\left.\:{describes}\:{a}\:{line}\:\left(\bigtriangleup\right)\:\right) \\ $$$$\mathrm{2}.\:{Deduce}\:{that}\:\left(\bigtriangleup\right)\:{is}\:{a}\:{line}\:{with}\: \\ $$$${gradient}\:\overset{\:\rightarrow} {{u}}\:{with}\:{affix}\:{z}_{\overset{\rightarrow} {{u}}} \:=\:{ib} \\ $$$$\mathrm{3}.\:{show}\:{that}\:\frac{{z}_{{MM}\:'} }{{z}_{{u}} }\:=\:\frac{{b}\overset{−} {{b}}\:−\:\mathrm{2}{Re}\left({b}\overset{−} {{z}}\right)}{{ib}\overset{−} {{b}}} \\ $$$$\mathrm{4}.\:{show}\:{that}\:\mathrm{2}{Re}\left(\overset{−} {{b}z}_{\mathrm{0}} \right)\:=\:{b}\overset{\_} {{b}}\:{where} \\ $$$$\:{z}_{\mathrm{0}} \:=\:\frac{{z}\:+\:{z}\:'}{\mathrm{2}} \\ $$$$\mathrm{5}.\:{Deduce}\:{that}\:{for}\:{M}\:\notin\:\left(\bigtriangleup\right)\:,\:{M}\:{is}\: \\ $$$${a}\:{perpendicular}\:{bisector}\:{of}\:\left[{MM}\:'\right] \\ $$

Question Number 209706    Answers: 2   Comments: 0

find the sum of sin^2 1°+sin^2 2°+...+sin^2 60°=?

$${find}\:{the}\:{sum}\:{of}\: \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{1}°+\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}°+...+\mathrm{sin}^{\mathrm{2}} \:\mathrm{60}°=? \\ $$

Question Number 209695    Answers: 1   Comments: 0

If: (a + b)∙(√2) = 7∙(a−b−4) Find: (2a + b) = ?

$$\mathrm{If}: \\ $$$$\left(\mathrm{a}\:+\:\mathrm{b}\right)\centerdot\sqrt{\mathrm{2}}\:=\:\mathrm{7}\centerdot\left(\mathrm{a}−\mathrm{b}−\mathrm{4}\right) \\ $$$$\mathrm{Find}: \\ $$$$\left(\mathrm{2a}\:+\:\mathrm{b}\right)\:=\:? \\ $$

Question Number 209694    Answers: 1   Comments: 0

x^2 +xy+y^2 =α^2 y^2 +yz+z^2 =β^2 z^2 +zx+x^2 =α^2 +β^2 Find x+y+z for x, y, z ∈R^+

$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\alpha^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\beta^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\mathrm{Find}\:{x}+{y}+{z}\:\mathrm{for}\:{x},\:{y},\:{z}\:\in\mathbb{R}^{+} \\ $$

Question Number 209691    Answers: 0   Comments: 0

∫(2x^(3x^2 +4x−7) )(log _2 (x^2 +3x−7))e^(x^2 +3x−5) dx=?

$$\:\:\:\int\left(\mathrm{2x}^{\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{7}} \right)\left(\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{7}\right)\right)\mathrm{e}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{5}} \:\mathrm{dx}=? \\ $$

  Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com