Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 79
Question Number 214560 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{\:\:{x}} \frac{\mathrm{ln}\:{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} }}{dx} \\ $$
Question Number 214514 Answers: 0 Comments: 7
$$ \\ $$
Question Number 214511 Answers: 0 Comments: 0
$$\mathrm{Let}'\mathrm{s}\:{R}\left({z}\right)\:\mathrm{define}\:\mathrm{as}\: \\ $$$${R}\left({z}\right)=\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$\mathrm{and}\:\mathrm{both}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}\:=\infty \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} {f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$=\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:{f}\left({z}\right)}{\mathrm{2}\pi\:\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({z}\right)\right)^{\mathrm{2}} }}\:..?? \\ $$
Question Number 214509 Answers: 1 Comments: 4
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{of}\:\mathrm{revolution} \\ $$$$\mathrm{generated}\:\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:{y}={x}\left(\mathrm{2}−{x}\right)\:\mathrm{and}\:{y}={x}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}. \\ $$
Question Number 214499 Answers: 3 Comments: 1
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{x}\:\:+\:\:\mathrm{3y}\right)\:\:=\:\:\mathrm{11}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{y}\:\:+\:\:\mathrm{3x}\right)\:\:=\:\:\mathrm{29}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:? \\ $$
Question Number 214498 Answers: 1 Comments: 0
Question Number 214495 Answers: 0 Comments: 1
Question Number 214485 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{7}}+...+\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)}\right) \\ $$
Question Number 214569 Answers: 2 Comments: 0
Question Number 214568 Answers: 1 Comments: 0
$$\int\frac{{b}+{ax}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx} \\ $$
Question Number 214566 Answers: 2 Comments: 0
$${somebody}\:{has}\:{posted}\:{following} \\ $$$${question}\:{and}\:{then}\:{deleted}\:{it}\:{again}. \\ $$$$\begin{cases}{{u}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{u}_{{n}} −\mathrm{9}}{{u}_{{n}} −\mathrm{2}}}\\{{u}_{\mathrm{0}} =\mathrm{5}}\end{cases} \\ $$$${find}\:{u}_{{n}} =?\:\left({or}\:{something}\:{like}\:{this}\right) \\ $$
Question Number 214483 Answers: 1 Comments: 0
Question Number 214479 Answers: 2 Comments: 0
Question Number 214471 Answers: 1 Comments: 0
$${d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0} \\ $$$$\underset{{k};\:{d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0}} {\sum}\:\frac{\mathrm{1}}{{k}}=?? \\ $$
Question Number 214491 Answers: 0 Comments: 0
Question Number 214457 Answers: 2 Comments: 2
$$\mathrm{If}\:\:\:\frac{\left(\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{3z}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} }\:=\:\mathrm{14}\:\:\:\:\:\mathrm{find}:\:\:\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{z}}\:=\:? \\ $$
Question Number 214456 Answers: 2 Comments: 1
$$\mathrm{If}\:\:\:\frac{\mathrm{x}}{\mathrm{a}^{\mathrm{2}} −\:\mathrm{bc}}\:=\:\frac{\mathrm{y}}{\mathrm{b}^{\mathrm{2}} −\:\mathrm{ac}}\:=\:\frac{\mathrm{z}}{\mathrm{c}^{\mathrm{2}} −\:\mathrm{ab}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{ax}\:+\:\mathrm{by}\:+\:\mathrm{cz}}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}\:=\:? \\ $$
Question Number 214455 Answers: 0 Comments: 4
$$\mathrm{If}\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{2xyz}} \\ $$
Question Number 214454 Answers: 0 Comments: 1
$$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\mathbb{R}^{+} \\ $$$$\mathrm{S}\:\:=\:\:\frac{\mathrm{9a}}{\mathrm{b}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{16b}}{\mathrm{a}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{49c}}{\mathrm{a}\:+\:\mathrm{b}} \\ $$$$\boldsymbol{\mathrm{min}}\left(\mathrm{S}\right)\:=\:? \\ $$
Question Number 214443 Answers: 1 Comments: 0
$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:\in\:\mathrm{Q} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}\:=\:\mathrm{2}^{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{c}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{d}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{e}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{f}}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:=\:? \\ $$
Question Number 214449 Answers: 2 Comments: 1
Question Number 214448 Answers: 0 Comments: 0
$$ \\ $$$$\overset{−} {{x}}\:=\:\frac{\Sigma{f}_{{i}} {x}_{{i}} }{\Sigma{f}_{{i}} \:}\:,\:\:\:\overset{−} {{u}}\:=\:\frac{\Sigma{f}_{{i}} {u}_{{i}} }{\Sigma{f}_{{i}} }\:,\:{u}\:=\:\frac{{x}−{a}}{{h}}\:, \\ $$$${proved}\:{that}\:\overset{−} {{x}}\:=\:{a}\:+\:{h}\overset{−} {{u}} \\ $$
Question Number 214447 Answers: 1 Comments: 1
Question Number 214427 Answers: 3 Comments: 1
Question Number 214421 Answers: 1 Comments: 0
Question Number 214419 Answers: 1 Comments: 0
Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81 Pg 82 Pg 83
Terms of Service
Privacy Policy
Contact: info@tinkutara.com