Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 79

Question Number 214560    Answers: 1   Comments: 0

∫_1 ^( x) ((ln x)/( (√(1−(ln x)^2 ))))dx

$$\int_{\mathrm{1}} ^{\:\:{x}} \frac{\mathrm{ln}\:{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} }}{dx} \\ $$

Question Number 214514    Answers: 0   Comments: 7

$$ \\ $$

Question Number 214511    Answers: 0   Comments: 0

Let′s R(z) define as R(z)=((π ∫_0 ^( z) f^2 (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt)) and both integral ∫_0 ^( ∞) f^( 2) (t)dt , ∫_0 ^( ∞) f(t)(√(1+(f^((1)) (t))^2 ))dt =∞ lim_(z→∞) ((π ∫_0 ^( z) f^( 2) (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt)) =lim_(z→∞) ((π f(z))/(2π (√(1+(f^((1)) (z))^2 )))) ..??

$$\mathrm{Let}'\mathrm{s}\:{R}\left({z}\right)\:\mathrm{define}\:\mathrm{as}\: \\ $$$${R}\left({z}\right)=\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$\mathrm{and}\:\mathrm{both}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}\:=\infty \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} {f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$=\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:{f}\left({z}\right)}{\mathrm{2}\pi\:\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({z}\right)\right)^{\mathrm{2}} }}\:..?? \\ $$

Question Number 214509    Answers: 1   Comments: 4

Find the volume of the solid of revolution generated by rotating the area bounded by y=x(2−x) and y=x about the y−axis.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{of}\:\mathrm{revolution} \\ $$$$\mathrm{generated}\:\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:{y}={x}\left(\mathrm{2}−{x}\right)\:\mathrm{and}\:{y}={x}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}. \\ $$

Question Number 214499    Answers: 3   Comments: 1

{ ((x^2 + (x + 3y) = 11)),((y^2 + (y + 3x) = 29)) :} ⇒ x + y = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{x}\:\:+\:\:\mathrm{3y}\right)\:\:=\:\:\mathrm{11}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{y}\:\:+\:\:\mathrm{3x}\right)\:\:=\:\:\mathrm{29}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:? \\ $$

Question Number 214498    Answers: 1   Comments: 0

Question Number 214495    Answers: 0   Comments: 1

Question Number 214485    Answers: 1   Comments: 0

lim_(n→∞) ((1/(2∙4))+(1/(5∙7))+...+(1/((3n−1)(3n+1))))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{7}}+...+\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)}\right) \\ $$

Question Number 214569    Answers: 2   Comments: 0

Question Number 214568    Answers: 1   Comments: 0

∫((b+ax)/(1+sin x)) dx

$$\int\frac{{b}+{ax}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx} \\ $$

Question Number 214566    Answers: 2   Comments: 0

somebody has posted following question and then deleted it again. { ((u_(n+1) =((4u_n −9)/(u_n −2)))),((u_0 =5)) :} find u_n =? (or something like this)

$${somebody}\:{has}\:{posted}\:{following} \\ $$$${question}\:{and}\:{then}\:{deleted}\:{it}\:{again}. \\ $$$$\begin{cases}{{u}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{u}_{{n}} −\mathrm{9}}{{u}_{{n}} −\mathrm{2}}}\\{{u}_{\mathrm{0}} =\mathrm{5}}\end{cases} \\ $$$${find}\:{u}_{{n}} =?\:\left({or}\:{something}\:{like}\:{this}\right) \\ $$

Question Number 214483    Answers: 1   Comments: 0

Question Number 214479    Answers: 2   Comments: 0

Question Number 214471    Answers: 1   Comments: 0

d^2 −d+2=0 Σ_(k; d^2 −d+2=0) (1/k)=??

$${d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0} \\ $$$$\underset{{k};\:{d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0}} {\sum}\:\frac{\mathrm{1}}{{k}}=?? \\ $$

Question Number 214491    Answers: 0   Comments: 0

Question Number 214457    Answers: 2   Comments: 2

If (((x + 2y + 3z)^2 )/(x^2 + y^2 + z^2 )) = 14 find: ((x + y)/z) = ?

$$\mathrm{If}\:\:\:\frac{\left(\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{3z}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} }\:=\:\mathrm{14}\:\:\:\:\:\mathrm{find}:\:\:\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{z}}\:=\:? \\ $$

Question Number 214456    Answers: 2   Comments: 1

If (x/(a^2 − bc)) = (y/(b^2 − ac)) = (z/(c^2 − ab)) Find: ((ax + by + cz)/(x + y + z)) = ?

$$\mathrm{If}\:\:\:\frac{\mathrm{x}}{\mathrm{a}^{\mathrm{2}} −\:\mathrm{bc}}\:=\:\frac{\mathrm{y}}{\mathrm{b}^{\mathrm{2}} −\:\mathrm{ac}}\:=\:\frac{\mathrm{z}}{\mathrm{c}^{\mathrm{2}} −\:\mathrm{ab}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{ax}\:+\:\mathrm{by}\:+\:\mathrm{cz}}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}\:=\:? \\ $$

Question Number 214455    Answers: 0   Comments: 4

If x+y+z=xyz Find: ((x(1−y^2 )(1−z^2 )+y(1−x^2 )(1−z^2 )+z(1−x^2 )(1−y^2 ))/(2xyz))

$$\mathrm{If}\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{2xyz}} \\ $$

Question Number 214454    Answers: 0   Comments: 1

a,b,c ∈ R^+ S = ((9a)/(b + c)) + ((16b)/(a + c)) + ((49c)/(a + b)) min(S) = ?

$$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\mathbb{R}^{+} \\ $$$$\mathrm{S}\:\:=\:\:\frac{\mathrm{9a}}{\mathrm{b}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{16b}}{\mathrm{a}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{49c}}{\mathrm{a}\:+\:\mathrm{b}} \\ $$$$\boldsymbol{\mathrm{min}}\left(\mathrm{S}\right)\:=\:? \\ $$

Question Number 214443    Answers: 1   Comments: 0

a,b,c,d,e,f ∈ Q (1/( (√2) − (2)^(1/3) )) = 2^a + 2^b + 2^c + 2^d + 2^e + 2^f find: a,b,c,d,e,f = ?

$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:\in\:\mathrm{Q} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}\:=\:\mathrm{2}^{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{c}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{d}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{e}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{f}}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:=\:? \\ $$

Question Number 214449    Answers: 2   Comments: 1

Question Number 214448    Answers: 0   Comments: 0

x^− = ((Σf_i x_i )/(Σf_i )) , u^− = ((Σf_i u_i )/(Σf_i )) , u = ((x−a)/h) , proved that x^− = a + hu^−

$$ \\ $$$$\overset{−} {{x}}\:=\:\frac{\Sigma{f}_{{i}} {x}_{{i}} }{\Sigma{f}_{{i}} \:}\:,\:\:\:\overset{−} {{u}}\:=\:\frac{\Sigma{f}_{{i}} {u}_{{i}} }{\Sigma{f}_{{i}} }\:,\:{u}\:=\:\frac{{x}−{a}}{{h}}\:, \\ $$$${proved}\:{that}\:\overset{−} {{x}}\:=\:{a}\:+\:{h}\overset{−} {{u}} \\ $$

Question Number 214447    Answers: 1   Comments: 1

Question Number 214427    Answers: 3   Comments: 1

Question Number 214421    Answers: 1   Comments: 0

Question Number 214419    Answers: 1   Comments: 0

  Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com