Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 79

Question Number 212669    Answers: 1   Comments: 1

Question Number 212668    Answers: 4   Comments: 0

Question Number 212654    Answers: 1   Comments: 0

Question Number 212651    Answers: 1   Comments: 0

Question Number 212646    Answers: 1   Comments: 1

lim_(n→∞) Σ_(i=1) ^n Σ_(j=i) ^i ((i(i+j))/((n^2 +i^2 )(n^2 +j^2 )))

$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{j}={i}} {\overset{{i}} {\sum}}\frac{{i}\left({i}+{j}\right)}{\left({n}^{\mathrm{2}} +{i}^{\mathrm{2}} \right)\left({n}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)} \\ $$

Question Number 212645    Answers: 0   Comments: 0

{ ((x=2+ log _2 log _2 y)),((y=2 log _2 z )),((z=2+ log _2 log _2 x )) :}

$$\:\:\begin{cases}{\mathrm{x}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \mathrm{log}\:_{\mathrm{2}} \mathrm{y}}\\{\mathrm{y}=\mathrm{2}\:\mathrm{log}\:_{\mathrm{2}} \mathrm{z}\:}\\{\mathrm{z}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:}\end{cases} \\ $$

Question Number 212643    Answers: 0   Comments: 6

Guess we can make youtube educational videos using this forum′s editor in offline mode. Tinkutara team, let me know. I alresdy made one..here

$${Guess}\:{we}\:{can}\:{make}\:{youtube}\: \\ $$$${educational}\:{videos}\:{using}\:{this}\: \\ $$$${forum}'{s}\:{editor}\:{in}\:{offline}\:{mode}. \\ $$$${Tinkutara}\:{team},\:{let}\:{me}\:{know}. \\ $$$${I}\:{alresdy}\:{made}\:{one}..{here} \\ $$

Question Number 212635    Answers: 1   Comments: 1

m≤∫_1 ^3 ((1 )/(√(2x^2 +7 ))) .dx≤k find the value of the constant m and k

$$\:\:\boldsymbol{{m}}\leqslant\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{1}\:}{\sqrt{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{7}\:}}\:.\boldsymbol{{dx}}\leqslant\boldsymbol{{k}}\:\boldsymbol{{find}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{constant}} \\ $$$$\:\:\boldsymbol{{m}}\:\boldsymbol{{and}}\:\boldsymbol{{k}} \\ $$

Question Number 212630    Answers: 2   Comments: 1

Question Number 212627    Answers: 1   Comments: 0

lim_(n→∞) (((√(1∙2))/(n^2 +1))+((√(2∙3))/(n^2 +2))+…+((√(n(n+1)))/(n^2 +n)))

$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}\centerdot\mathrm{2}}}{{n}^{\mathrm{2}} +\mathrm{1}}+\frac{\sqrt{\mathrm{2}\centerdot\mathrm{3}}}{{n}^{\mathrm{2}} +\mathrm{2}}+\ldots+\frac{\sqrt{{n}\left({n}+\mathrm{1}\right)}}{{n}^{\mathrm{2}} +{n}}\right) \\ $$

Question Number 212626    Answers: 1   Comments: 0

let f(x)=(1/( (√((x−a)(x−b)(x−c))))) let a, b, c ∈R ∧a<b<c ⇒ D(f(x))=(a, b)∪(c, ∞) prove ∫_a ^b f(x)dx=∫_c ^∞ f(x)dx

$$\mathrm{let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}} \\ $$$$\mathrm{let}\:{a},\:{b},\:{c}\:\in\mathbb{R}\:\wedge{a}<{b}<{c} \\ $$$$\Rightarrow\:{D}\left({f}\left({x}\right)\right)=\left({a},\:{b}\right)\cup\left({c},\:\infty\right) \\ $$$$\mathrm{prove}\:\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}=\underset{{c}} {\overset{\infty} {\int}}{f}\left({x}\right){dx} \\ $$

Question Number 212621    Answers: 0   Comments: 1

A group of n people are standing in a circle. They are numbered with 1, 2, 3, etc. Starting with the person with the number 1, every second person is removed from the circle and this process continues until only one person remains in the circle. What will be the number of the last person left.

$$\mathrm{A}\:\mathrm{group}\:\mathrm{of}\:\boldsymbol{\mathrm{n}}\:\mathrm{people}\:\mathrm{are}\:\mathrm{standing}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{circle}.\:\:\mathrm{They}\:\mathrm{are}\:\mathrm{numbered}\:\mathrm{with}\: \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{etc}.\:\mathrm{Starting}\:\mathrm{with}\:\mathrm{the}\:\mathrm{person} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{number}\:\mathrm{1},\:\mathrm{every}\:\mathrm{second}\: \\ $$$$\mathrm{person}\:\mathrm{is}\:\mathrm{removed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{and}\: \\ $$$$\mathrm{this}\:\mathrm{process}\:\mathrm{continues}\:\mathrm{until}\:\mathrm{only}\:\mathrm{one}\: \\ $$$$\mathrm{person}\:\mathrm{remains}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}.\:\:\mathrm{What} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{person} \\ $$$$\mathrm{left}. \\ $$

Question Number 212618    Answers: 0   Comments: 1

lim_(n→0) (Π_(k=1) ^n ((k^2 +3k+2)/(k^2 +2k+1)))^(1/n)

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}}{{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$

Question Number 212616    Answers: 0   Comments: 1

if f(x)=^a x=x^x^x^⋰^x (there are a x′s;a∈N and a≠0) ∫f(x)dx=?

$$ \\ $$$$ \\ $$$${if}\:\:\mathrm{f}\left(\mathrm{x}\right)=\:^{{a}} {x}={x}^{{x}^{{x}^{\iddots^{{x}} } } } \left({there}\:{are}\:{a}\:{x}'{s};{a}\in\mathbb{N}\:{and}\:{a}\neq\mathrm{0}\right) \\ $$$$\int{f}\left({x}\right){dx}=? \\ $$

Question Number 212612    Answers: 1   Comments: 0

Solve the differential equation: (dy/dx) = cos(x + y)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\:=\:\:\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right) \\ $$

Question Number 212609    Answers: 1   Comments: 0

If 0≤x≤2 Prove that: 2^x + 1 − (√(10,5x + 4)) ≤ 0

$$\mathrm{If}\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{2} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{1}\:−\:\sqrt{\mathrm{10},\mathrm{5x}\:+\:\mathrm{4}}\:\leqslant\:\mathrm{0} \\ $$

Question Number 212607    Answers: 0   Comments: 0

Question Number 212604    Answers: 0   Comments: 0

draw the structural formula for Spiro [2.2.2.5.8.6] compounds

$$\boldsymbol{\mathrm{draw}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{structural}}\:\boldsymbol{\mathrm{formula}}\:\boldsymbol{\mathrm{for}} \\ $$$$ \\ $$Spiro [2.2.2.5.8.6] compounds

Question Number 212602    Answers: 0   Comments: 0

Question Number 212601    Answers: 0   Comments: 0

Question Number 212600    Answers: 1   Comments: 0

certificate: lim_(n→∞) ∫_0 ^1 (n/(1+n^2 x^2 ))e^x^3 dx=(π/2).

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} {x}^{\mathrm{2}} }{e}^{{x}^{\mathrm{3}} } {dx}=\frac{\pi}{\mathrm{2}}. \\ $$

Question Number 212598    Answers: 1   Comments: 0

Help me to solve pls Q 212576

$$\mathrm{Help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{pls} \\ $$$$\mathrm{Q}\:\mathrm{212576}\: \\ $$

Question Number 212647    Answers: 2   Comments: 1

(√(x−(1/x))) +(√(1−(1/x))) = x

$$\:\:\:\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}}\:+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}}\:=\:\mathrm{x}\: \\ $$

Question Number 212906    Answers: 0   Comments: 1

Pls i need a help.. from Ordinary differantial Equation t^2 y^((2)) (t)+t∙y^((1)) (t)+(t^2 −ν^2 )y(t)=0 we Already Know Solution y(t)=C_1 J_ν (t)+C_2 J_(−ν) (t) But J_(−ν) (t) can′t Satisfy as Solution Cus J_ν (t) and J_(−ν) (t) are Not Linear independent. Wronskian W∈mat(m,m) det W=0 thus Solution y(t)=C_1 J_ν (t)+C_2 Y_ν (t) i already undertand above indentity i wrote my question is prove Abel′s identity W(J_ν (t),Y_ν (t))=(2/(πt)) Pls Help :(

$$\mathrm{Pls}\:\mathrm{i}\:\mathrm{need}\:\mathrm{a}\:\mathrm{help}.. \\ $$$$\mathrm{from}\:\mathrm{Ordinary}\:\mathrm{differantial}\:\mathrm{Equation} \\ $$$${t}^{\mathrm{2}} {y}^{\left(\mathrm{2}\right)} \left({t}\right)+{t}\centerdot{y}^{\left(\mathrm{1}\right)} \left({t}\right)+\left({t}^{\mathrm{2}} −\nu^{\mathrm{2}} \right){y}\left({t}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{Already}\:\mathrm{Know} \\ $$$$\mathrm{Solution}\:{y}\left({t}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {J}_{−\nu} \left({t}\right) \\ $$$$\mathrm{But}\:{J}_{−\nu} \left({t}\right)\:\mathrm{can}'\mathrm{t}\:\mathrm{Satisfy}\:\mathrm{as}\:\mathrm{Solution} \\ $$$$\mathrm{Cus}\:{J}_{\nu} \left({t}\right)\:\mathrm{and}\:{J}_{−\nu} \left({t}\right)\:\mathrm{are}\:\mathrm{Not}\:\mathrm{Linear}\:\mathrm{independent}. \\ $$$$\mathrm{Wronskian}\:\mathcal{W}\in\mathrm{mat}\left({m},{m}\right) \\ $$$$\mathrm{det}\:\mathcal{W}=\mathrm{0} \\ $$$$\mathrm{thus}\:\mathrm{Solution}\:{y}\left({t}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right) \\ $$$$\mathrm{i}\:\mathrm{already}\:\mathrm{undertand}\:\mathrm{above}\:\mathrm{indentity} \\ $$$$\mathrm{i}\:\mathrm{wrote} \\ $$$$\mathrm{my}\:\mathrm{question}\:\mathrm{is}\:\mathrm{prove}\:\mathrm{Abel}'\mathrm{s}\:\mathrm{identity} \\ $$$$\:\mathcal{W}\left({J}_{\nu} \left({t}\right),{Y}_{\nu} \left({t}\right)\right)=\frac{\mathrm{2}}{\pi{t}} \\ $$$$\boldsymbol{\mathrm{Pls}}\:\boldsymbol{\mathrm{Help}}\:\::\left(\right. \\ $$

Question Number 212595    Answers: 1   Comments: 0

lim_(n→∞) ((1^2 /(n^2 +1))+(2^2 /(n^2 +2))+(3^2 /(n^2 +3))+…+(n^2 /(n^2 +n))−(n/3))=?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{2}}+\frac{\mathrm{3}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{3}}+\ldots+\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} +{n}}−\frac{{n}}{\mathrm{3}}\right)=? \\ $$

Question Number 212593    Answers: 1   Comments: 1

  Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com