Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 78

Question Number 215625    Answers: 1   Comments: 5

x^4 +x^3 −8x^2 +2x+4=0 x=1 ∨ x=2 ∨ x=2±(√2) Is this right? I have not enough time to edit my solution

$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}=\mathrm{0} \\ $$$${x}=\mathrm{1}\:\vee\:{x}=\mathrm{2}\:\vee\:{x}=\mathrm{2}\pm\sqrt{\mathrm{2}} \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{right}?\:\mathrm{I}\:\mathrm{have}\:\mathrm{not}\:\mathrm{enough}\:\mathrm{time}\:\mathrm{to}\:\mathrm{edit}\:\mathrm{my}\:\mathrm{solution} \\ $$

Question Number 215608    Answers: 1   Comments: 3

Question Number 215604    Answers: 1   Comments: 0

Question Number 215598    Answers: 1   Comments: 1

Question Number 215593    Answers: 2   Comments: 2

Question Number 215589    Answers: 0   Comments: 0

jarak pada peta = skala × jarak sebenarnya

$${jarak}\:{pada}\:{peta}\:=\:{skala}\:×\:{jarak}\:{sebenarnya} \\ $$

Question Number 215588    Answers: 0   Comments: 1

jarak sebenarnya= ((jarak pada peta)/(skala))

$${jarak}\:{sebenarnya}=\:\frac{{jarak}\:{pada}\:{peta}}{{skala}} \\ $$

Question Number 215587    Answers: 0   Comments: 1

skala=((jarak di peta)/(jarak sebenarnya))

$${skala}=\frac{{jarak}\:{di}\:{peta}}{{jarak}\:{sebenarnya}} \\ $$

Question Number 215564    Answers: 2   Comments: 0

given; x(√y)+y(√x)=630 y(√y)+x(√x)=604 find x and y

$$\boldsymbol{\mathrm{given}};\:\:\boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{y}}}+\boldsymbol{\mathrm{y}}\sqrt{\boldsymbol{\mathrm{x}}}=\mathrm{630} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{y}}\sqrt{\boldsymbol{\mathrm{y}}}+\boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{x}}}=\mathrm{604} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}} \\ $$

Question Number 215559    Answers: 2   Comments: 0

(√y) + (√x) = 5 (√x) ∙ (√y) = 8 (((√x) y − x (√y))/(y − x)) = ?

$$\sqrt{\mathrm{y}}\:+\:\sqrt{\mathrm{x}}\:=\:\mathrm{5} \\ $$$$\sqrt{\mathrm{x}}\:\centerdot\:\sqrt{\mathrm{y}}\:=\:\mathrm{8} \\ $$$$\frac{\sqrt{\mathrm{x}}\:\mathrm{y}\:−\:\mathrm{x}\:\sqrt{\mathrm{y}}}{\mathrm{y}\:−\:\mathrm{x}}\:=\:? \\ $$

Question Number 215550    Answers: 1   Comments: 0

Let u^((1)) ,u^((2)) s.t. { ((u_(tt) ^((1)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_i ^2 ))u^((1)) )),((u^((1)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))),((u^((1)) (x_1 ,x_2 ,0)=0)) :}, { ((u_(tt) ^((2)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_2 ^2 )+c^2 )u^((2)) )),((u^((2)) (x_1 x_2 ,0)=0)),((u_t ^((2)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))) :} prove:u^((2)) (x_1 ,x_2 ,t)=(1/(2𝛑))∫∫_(𝛏_1 ^2 +𝛏_2 ^2 ≤t^2 ) ((e^(𝛏_2 c) u^((1)) (x_1 ,x_2 ,𝛏_1 )d𝛏_1 d𝛏_2 )/( (√(t^2 −𝛏_1 ^2 −𝛏_2 ^2 ))))

$$\boldsymbol{\mathrm{Let}}\:\boldsymbol{{u}}^{\left(\mathrm{1}\right)} ,\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \boldsymbol{\mathrm{s}}.\boldsymbol{\mathrm{t}}.\begin{cases}{\boldsymbol{{u}}_{\boldsymbol{{tt}}} ^{\left(\mathrm{1}\right)} =\left(\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{{i}} ^{\mathrm{2}} }\right)\boldsymbol{{u}}^{\left(\mathrm{1}\right)} }\\{\boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\boldsymbol{\psi}\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} \right)}\\{\boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\mathrm{0}}\end{cases},\begin{cases}{\boldsymbol{{u}}_{\boldsymbol{{tt}}} ^{\left(\mathrm{2}\right)} =\left(\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{2}} ^{\mathrm{2}} }+\boldsymbol{{c}}^{\mathrm{2}} \right)\boldsymbol{{u}}^{\left(\mathrm{2}\right)} }\\{\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} \boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\mathrm{0}}\\{\boldsymbol{{u}}_{\boldsymbol{{t}}} ^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\boldsymbol{\psi}\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} \right)}\end{cases} \\ $$$$\mathrm{prove}:\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{{t}}\right)=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\pi}}\int\int_{\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} \leq\boldsymbol{{t}}^{\mathrm{2}} } \frac{\boldsymbol{{e}}^{\boldsymbol{\xi}_{\mathrm{2}} \boldsymbol{{c}}} \boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{\xi}_{\mathrm{1}} \right)\boldsymbol{{d}\xi}_{\mathrm{1}} \boldsymbol{{d}\xi}_{\mathrm{2}} }{\:\sqrt{\boldsymbol{{t}}^{\mathrm{2}} −\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} −\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$

Question Number 215540    Answers: 1   Comments: 0

∫_(Σ_(1≤i≤n) x_i ^2 ≤1) (Σ_(1≤i≤n) x_i ^2 )^m (Σ_(1≤i≤n) a_i x_i )^(2k) Π_(1≤i≤n) dx_i

$$\int_{\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} ^{\mathrm{2}} \leq\mathrm{1}} \left(\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} ^{\mathrm{2}} \right)^{{m}} \left(\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{a}_{{i}} {x}_{{i}} \right)^{\mathrm{2}{k}} \underset{\mathrm{1}\leq{i}\leq{n}} {\prod}{dx}_{{i}} \\ $$

Question Number 215535    Answers: 1   Comments: 0

∫_(Σ_(1≤i≤n) x_i ^2 ≤R^2 ) Σ_(1≤i≤n) x_i (∂f/∂x_i )Π_(1≤i≤n) dx_i =?

$$\int_{\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} ^{\mathrm{2}} \leq{R}^{\mathrm{2}} } \underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} \frac{\partial{f}}{\partial{x}_{{i}} }\underset{\mathrm{1}\leq{i}\leq{n}} {\prod}{dx}_{{i}} =? \\ $$

Question Number 215525    Answers: 1   Comments: 0

Φ :R^2 →R^2 (x.;y)∣→(2x+3y:3y) find Φ∈L(R^2 ) find ker(Φ) and the im(Φ) f o f =?

$$\Phi\::\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{2}} \: \\ $$$$\:\:\:\left({x}.;{y}\right)\mid\rightarrow\left(\mathrm{2}{x}+\mathrm{3}{y}:\mathrm{3}{y}\right) \\ $$$${find} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\Phi\in\mathscr{L}\left(\mathbb{R}^{\mathrm{2}} \right) \\ $$$${find}\:{ker}\left(\Phi\right)\:{and}\:{the}\:{im}\left(\Phi\right) \\ $$$${f}\:{o}\:{f}\:=? \\ $$$$ \\ $$

Question Number 215523    Answers: 2   Comments: 2

Two friends set off by train at dawn to visit each other. The two friends caught sight of each other through the window as the trains passed in opposite direction on adjacent tracks− it was 12^(oo) hours. The friends helplessly reached their destinations. If the first of them reached their destination at 16^(oo) and the second at 21^(oo) , what time did dawn break on that day ? Help me, please

$$ \\ $$$$\:\:\:\mathcal{T}{wo}\:{friends}\:{set}\:{off}\:\:{by}\:{train}\:{at}\:{dawn}\:{to}\:{visit} \\ $$$$\:\:\:{each}\:{other}.\:{The}\:{two}\:{friends}\:{caught}\:{sight}\:{of} \\ $$$$\:\:\:{each}\:{other}\:{through}\:{the}\:{window}\:{as}\:{the}\:{trains}\: \\ $$$$\:\:\:{passed}\:{in}\:{opposite}\:{direction}\:{on}\:{adjacent}\:{tracks}− \\ $$$$\:\:\:{it}\:{was}\:\mathrm{12}^{{oo}} \:{hours}.\:{The}\:{friends}\:{helplessly}\:{reached}\: \\ $$$$\:\:\:{their}\:{destinations}.\:{If}\:{the}\:{first}\:{of}\:{them}\:{reached}\: \\ $$$$\:\:\:{their}\:{destination}\:{at}\:\mathrm{16}^{{oo}} \:{and}\:{the}\:{second}\:{at}\:\mathrm{21}^{{oo}} , \\ $$$$\:\:\:{what}\:{time}\:{did}\:{dawn}\:{break}\:{on}\:{that}\:{day}\:? \\ $$$$\:\:\:{Help}\:{me},\:{please} \\ $$

Question Number 215520    Answers: 2   Comments: 0

Prove that { ((x = ((7 cos t − 2)/(2 − cos t)))),((y = ((4(√3) sin t)/(2 − cos t)))) :} is a circle.

$$\mathrm{Prove}\:\mathrm{that}\:\begin{cases}{{x}\:=\:\frac{\mathrm{7}\:\mathrm{cos}\:{t}\:−\:\mathrm{2}}{\mathrm{2}\:−\:\mathrm{cos}\:{t}}}\\{{y}\:=\:\frac{\mathrm{4}\sqrt{\mathrm{3}}\:\mathrm{sin}\:{t}}{\mathrm{2}\:−\:\mathrm{cos}\:{t}}}\end{cases}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}. \\ $$

Question Number 215519    Answers: 1   Comments: 0

Find ((y/x))^(log_(x/y) (y/x) ) below: 2x^2 + xy − 3y^2 = 0

$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{Find}}\:\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)^{\boldsymbol{\mathrm{log}}_{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{y}}}} \frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\:} \boldsymbol{\mathrm{below}}: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{xy}}\:−\:\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$ \\ $$

Question Number 215504    Answers: 1   Comments: 0

simplify a−{b^(c−b) +⟨(b^(c−b) )^2 +((a/2))^2 ⟩+(a/2)}+c^(ab−c) −c^(a−c)

$$\mathrm{simplify}\:{a}−\left\{{b}^{{c}−{b}} +\langle\left({b}^{{c}−{b}} \right)^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} \rangle+\frac{{a}}{\mathrm{2}}\right\}+{c}^{{ab}−{c}} −{c}^{{a}−{c}} \\ $$

Question Number 215527    Answers: 1   Comments: 0

t_(33) ′ab+t_(00) ′ab=? Clearing up defintions: t_(33) ′a=(a−(√(36)))×3 t_(00) ′a=(a−(√(36)))×0 t′a=a−(√(36)) t′a= “transformation” of a

$${t}_{\mathrm{33}} '{ab}+{t}_{\mathrm{00}} '{ab}=? \\ $$$$ \\ $$$$\mathrm{Clearing}\:\mathrm{up}\:\mathrm{defintions}: \\ $$$${t}_{\mathrm{33}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{3} \\ $$$${t}_{\mathrm{00}} '{a}=\left({a}−\sqrt{\mathrm{36}}\right)×\mathrm{0} \\ $$$${t}'{a}={a}−\sqrt{\mathrm{36}} \\ $$$${t}'{a}=\:``\mathrm{transformation}''\:\mathrm{of}\:{a} \\ $$

Question Number 215498    Answers: 2   Comments: 0

∫(e^(−ωu) +cos(u)−((sin(ωu))/e^u ))du

$$\int\left({e}^{−\omega{u}} +\mathrm{cos}\left({u}\right)−\frac{\mathrm{sin}\left(\omega{u}\right)}{{e}^{{u}} }\right){du} \\ $$

Question Number 215496    Answers: 1   Comments: 1

∫_0 ^π ((xtanx)/(secx + tanx)) dx Solve the integral.

$$\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{tan}{x}}{\mathrm{sec}{x}\:+\:\mathrm{tan}{x}}\:{dx} \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integral}. \\ $$

Question Number 215515    Answers: 0   Comments: 0

Question Number 215516    Answers: 1   Comments: 0

prove: Σ_(n=1) ^∞ (1/(π^2 n^2 +1))=(1/(e^2 −1))

$$\:\:\:\:\:\:\mathrm{prove}: \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\pi^{\mathrm{2}} {n}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{{e}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 215492    Answers: 1   Comments: 1

Question Number 215572    Answers: 0   Comments: 1

Question Number 215473    Answers: 1   Comments: 0

Solve for x 2sin^2 x+3sin(x)+1=0 for 0 ≤ x

$${Solve}\:{for}\:{x} \\ $$$$ \\ $$$$\mathrm{2}{sin}^{\mathrm{2}} {x}+\mathrm{3}{sin}\left({x}\right)+\mathrm{1}=\mathrm{0}\:{for}\:\mathrm{0}\:\leqslant\:{x} \\ $$

  Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com