Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 78

Question Number 205457    Answers: 3   Comments: 0

Question Number 205456    Answers: 1   Comments: 0

Question Number 205479    Answers: 1   Comments: 0

Question Number 205446    Answers: 1   Comments: 0

Question Number 205451    Answers: 1   Comments: 0

lim_(x→∞) ∫_0 ^x (dt/(e^(2t) t))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{x}} \frac{{dt}}{{e}^{\mathrm{2}{t}} {t}} \\ $$

Question Number 205448    Answers: 0   Comments: 0

A=lim_(x→0) ((sinx)/x^3 )=?

$${A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{sinx}}{{x}^{\mathrm{3}} }=? \\ $$

Question Number 205432    Answers: 2   Comments: 0

Find: Ω = ∫_0 ^( 2𝛑) ln (sinx + (√(1 + sin^2 x))) dx

$$\mathrm{Find}:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}\boldsymbol{\pi}} \:\mathrm{ln}\:\left(\mathrm{sinx}\:+\:\sqrt{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}}\right)\:\mathrm{dx} \\ $$

Question Number 205431    Answers: 0   Comments: 0

Prove that in any △ABC ((cotA cotB cotC)/(sinA sinB sinC)) ≤ (8/(27))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\frac{\mathrm{cotA}\:\mathrm{cotB}\:\mathrm{cotC}}{\mathrm{sinA}\:\mathrm{sinB}\:\mathrm{sinC}}\:\leqslant\:\frac{\mathrm{8}}{\mathrm{27}} \\ $$

Question Number 205430    Answers: 0   Comments: 0

Prove that in any △ABC (1/(sinA)) + (1/(sinB)) + (1/(sinC)) ≤ (2/3) (cot(A/2) + cot(B/2) + cot(C/2))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\frac{\mathrm{1}}{\mathrm{sinA}}\:+\:\frac{\mathrm{1}}{\mathrm{sinB}}\:+\:\frac{\mathrm{1}}{\mathrm{sinC}}\:\leqslant\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\mathrm{cot}\frac{\mathrm{A}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{B}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{C}}{\mathrm{2}}\right) \\ $$

Question Number 205429    Answers: 2   Comments: 0

If, ϕ = (1/2) (π −cos^( −1) ((1/4) )) ⇒ log_( 2) ( (( 1+ cos(6ϕ ))/(cos^6 (ϕ ))) ) =?

$$ \\ $$$$\:\mathrm{I}{f},\:\:\varphi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\pi\:−{cos}^{\:−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)\right) \\ $$$$ \\ $$$$\:\:\:\Rightarrow\:\mathrm{log}_{\:\mathrm{2}} \left(\:\frac{\:\mathrm{1}+\:{cos}\left(\mathrm{6}\varphi\:\right)}{{cos}^{\mathrm{6}} \left(\varphi\:\right)}\:\right)\:=? \\ $$$$ \\ $$

Question Number 205428    Answers: 2   Comments: 0

Question Number 205423    Answers: 1   Comments: 0

If a , b ∈ R Then: a^2 + b^2 ≥ ab + (√((a^4 + b^4 )/2))

$$\mathrm{If} \\ $$$$\mathrm{a}\:,\:\mathrm{b}\:\in\:\mathbb{R} \\ $$$$\mathrm{Then}: \\ $$$$\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:\geqslant\:\mathrm{ab}\:+\:\sqrt{\frac{\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} }{\mathrm{2}}} \\ $$

Question Number 205422    Answers: 1   Comments: 0

If (a + 1)(b + 1)(c + 1) = 8 Then: a^2 + b^2 + c^2 ≥ 3

$$\mathrm{If} \\ $$$$\left(\mathrm{a}\:+\:\mathrm{1}\right)\left(\mathrm{b}\:+\:\mathrm{1}\right)\left(\mathrm{c}\:+\:\mathrm{1}\right)\:=\:\mathrm{8} \\ $$$$\mathrm{Then}: \\ $$$$\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\geqslant\:\mathrm{3} \\ $$

Question Number 205420    Answers: 1   Comments: 0

If a^3 + b^3 + a^2 + b^2 = 4 Then: a^4 + b^4 ≥ 2

$$\mathrm{If} \\ $$$$\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\mathrm{Then}: \\ $$$$\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:\geqslant\:\mathrm{2} \\ $$

Question Number 205409    Answers: 0   Comments: 0

let x, y, z be random numbers from 0 to 10 where x,y,z∈R what is the probability that a) all the following is satisfied ∣x−y∣≥2 ∣x−z∣≥2 ∣y−z∣≥2 b) the probability that one or two of them are not satisfied c) the probability that all of them are not satisfied

$$\mathrm{let}\:{x},\:{y},\:{z}\:\mathrm{be}\:\mathrm{random}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{10} \\ $$$$\mathrm{where}\:{x},{y},{z}\in\mathbb{R} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\left.{a}\right)\:\mathrm{all}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{satisfied} \\ $$$$\mid{x}−{y}\mid\geqslant\mathrm{2} \\ $$$$\mid{x}−{z}\mid\geqslant\mathrm{2} \\ $$$$\mid{y}−{z}\mid\geqslant\mathrm{2} \\ $$$$\left.{b}\right)\:\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\:\mathrm{one}\:\mathrm{or}\:\mathrm{two}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are}\:\mathrm{not}\:\mathrm{satisfied} \\ $$$$\left.{c}\right)\:\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{all}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are}\:\mathrm{not}\:\mathrm{satisfied} \\ $$$$ \\ $$

Question Number 205406    Answers: 3   Comments: 2

Question Number 205403    Answers: 1   Comments: 0

Question Number 205472    Answers: 1   Comments: 0

Question Number 205421    Answers: 0   Comments: 0

If a,b,c>0 and abc=1 Then: (a/b^(2024) ) + (b/c^(2024) ) + (c/a^(2024) ) ≥ a + b + c

$$\mathrm{If} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{abc}=\mathrm{1} \\ $$$$\mathrm{Then}: \\ $$$$\frac{\mathrm{a}}{\mathrm{b}^{\mathrm{2024}} }\:+\:\frac{\mathrm{b}}{\mathrm{c}^{\mathrm{2024}} }\:+\:\frac{\mathrm{c}}{\mathrm{a}^{\mathrm{2024}} }\:\geqslant\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c} \\ $$

Question Number 205393    Answers: 0   Comments: 0

Question Number 205394    Answers: 1   Comments: 0

let x and y be random numbers from 0 to 10 where x,y∈R ∣x−y∣≥d what is the probability that their sum is less than 10 in the following cases a) d=0 b) d=1 c) d=2

$$\mathrm{let}\:{x}\:\mathrm{and}\:{y}\:\mathrm{be}\:\mathrm{random}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{10} \\ $$$$\mathrm{where}\:{x},{y}\in\mathbb{R} \\ $$$$\mid{x}−{y}\mid\geqslant{d} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:\mathrm{10} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases} \\ $$$$\left.{a}\right)\:{d}=\mathrm{0} \\ $$$$\left.{b}\right)\:{d}=\mathrm{1} \\ $$$$\left.{c}\right)\:{d}=\mathrm{2} \\ $$

Question Number 205379    Answers: 2   Comments: 0

Question Number 205380    Answers: 3   Comments: 0

Question Number 205372    Answers: 0   Comments: 0

Question Number 205371    Answers: 1   Comments: 2

Question Number 205367    Answers: 1   Comments: 0

  Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com