Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 778
Question Number 141380 Answers: 0 Comments: 0
Question Number 141378 Answers: 2 Comments: 0
$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{5}{n}+\mathrm{2}\right)\left(\mathrm{5}{n}+\mathrm{3}\right)}{\left(\mathrm{5}{n}+\mathrm{1}\right)\left(\mathrm{5}{n}+\mathrm{4}\right)}\:=\varphi\: \\ $$$$\:\:\:\:\:\:\:\varphi:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Question Number 141294 Answers: 5 Comments: 0
$${Find}\:{max}\:\&\:{min}\:{value}\:{of} \\ $$$$\:{f}\left({x}\right)=\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{9}}. \\ $$
Question Number 141328 Answers: 2 Comments: 0
$$......\:{Evaluate}: \\ $$$$\:\:\:\:\:\mathscr{F}\::=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{{n}+\mathrm{1}}\:=? \\ $$$$....... \\ $$
Question Number 141312 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{Si}\left(\mathrm{2}\pi{n}\right)−\frac{\pi}{\mathrm{2}}}{{n}}=? \\ $$
Question Number 141289 Answers: 1 Comments: 1
Question Number 141381 Answers: 0 Comments: 0
$$\mathrm{Let}\:\:{a},{b}\:\geqslant\:\mathrm{0}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+{b}+\mathrm{2}\right)^{\mathrm{3}} \:\geqslant\:\frac{\mathrm{27}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 141291 Answers: 0 Comments: 3
Question Number 141269 Answers: 1 Comments: 3
$$\theta+\phi+\psi=\pi\:\:\left({angles}\:{of}\:{a}\:\bigtriangleup\right) \\ $$$${find}\:{maximum}\:{of} \\ $$$$\:\left(\phi−\theta\right)^{\mathrm{2}} +\left(\psi−\phi\right)^{\mathrm{2}} +\left(\psi−\theta\right)^{\mathrm{2}} \:. \\ $$
Question Number 141412 Answers: 1 Comments: 2
$$\:{Find}\:{the}\:{range}\:{of}\:{real}\:{number} \\ $$$${of}\:{q}\:{such}\:{that}\:{the}\:{function}\: \\ $$$$\:{f}\left({x}\right)\:=\:\mathrm{cos}\:{x}\left({q}\:\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{5}\right)\:{have} \\ $$$${minimum}\:{value}\:{is}\:−\mathrm{5}\:. \\ $$
Question Number 141283 Answers: 0 Comments: 0
$$\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}^{\mathrm{3}} }+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{5}^{\mathrm{3}} }+... \\ $$
Question Number 141257 Answers: 0 Comments: 0
Question Number 141252 Answers: 1 Comments: 0
Question Number 141249 Answers: 2 Comments: 1
Question Number 141246 Answers: 1 Comments: 0
$${r}={q}+\mathrm{1} \\ $$$${pq}={q}+\mathrm{1} \\ $$$${c}^{\mathrm{2}} {p}={qr}^{\mathrm{2}} \:\:\:,\:{help}\:{find}\:{p},\:{q},\:{r}. \\ $$
Question Number 141244 Answers: 1 Comments: 1
$${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}\left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}−\mathrm{2}{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right\}{dx}}{\left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right\}} \\ $$
Question Number 141240 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{fourier}'\mathrm{s}\:\mathrm{series} \\ $$$$−\mathrm{y}''+\mathrm{y}=\mathrm{e}^{−\mathrm{2}\mid\mathrm{x}\mid} \\ $$
Question Number 141227 Answers: 1 Comments: 2
Question Number 141243 Answers: 0 Comments: 0
$$\begin{cases}{\mathrm{ty}''+\mathrm{y}'+\mathrm{ty}=\mathrm{0}}\\{\mathrm{y}\left(\mathrm{0}^{+} \right)=\mathrm{1}}\end{cases} \\ $$
Question Number 141222 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\frac{\mathrm{d}\theta}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\:\mathrm{cos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 141221 Answers: 2 Comments: 2
Question Number 141220 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{logx}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx} \\ $$
Question Number 141219 Answers: 1 Comments: 0
$$\mathrm{find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)} \sqrt{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} }\mathrm{dxdy} \\ $$
Question Number 141218 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:^{\mathrm{4}} \sqrt{\mathrm{tanx}}\mathrm{log}\left(\mathrm{tanx}\right)\mathrm{dx}\:\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{log}\left(\mathrm{tanx}\right)}{\left(^{\mathrm{3}} \sqrt{\mathrm{tanx}}\right)}\mathrm{dx} \\ $$
Question Number 141198 Answers: 0 Comments: 2
Question Number 141197 Answers: 1 Comments: 0
$${Write}\:{the}\:{next}\:{three}\:{terms}\:\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{7}},\:\frac{\mathrm{8}}{\mathrm{3}},\:\_\_\_,\:\_\_\_,\:\_\_\_,\:... \\ $$
Pg 773 Pg 774 Pg 775 Pg 776 Pg 777 Pg 778 Pg 779 Pg 780 Pg 781 Pg 782
Terms of Service
Privacy Policy
Contact: info@tinkutara.com