Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 778

Question Number 138748    Answers: 1   Comments: 0

A committee of 3 members is to be formed from 8 members. Find the number of committees that can be formed if two particular club members cannot both be in a committee

$$\mathrm{A}\:\mathrm{committee}\:\mathrm{of}\:\mathrm{3}\:\mathrm{members}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{8}\:\mathrm{members}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{committees}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{if}\:\mathrm{two}\:\mathrm{particular} \\ $$$$\mathrm{club}\:\mathrm{members}\:\mathrm{cannot}\:\mathrm{both}\:\mathrm{be}\:\mathrm{in}\:\mathrm{a}\:\mathrm{committee} \\ $$

Question Number 138742    Answers: 2   Comments: 0

........ nice .... calculus... evaluate :: Ω=∫_0 ^( 1) ((x^(e^π −1) −x^(e^γ −1) )/(ln((x)^(1/3) )))dx=^? 3(π−γ)

$$\:\:\:\:\:\:\:\:\:\:\:........\:{nice}\:\:\:....\:\:\:{calculus}... \\ $$$$\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{{e}^{\pi} −\mathrm{1}} −{x}^{{e}^{\gamma} −\mathrm{1}} }{{ln}\left(\sqrt[{\mathrm{3}}]{{x}}\:\right)}{dx}\overset{?} {=}\mathrm{3}\left(\pi−\gamma\right) \\ $$

Question Number 138735    Answers: 2   Comments: 0

Question Number 138734    Answers: 0   Comments: 1

Question Number 138733    Answers: 0   Comments: 0

.....mathematical ....analysis..... suppose f :[a , b]→R is a function and α:[a , b]→^(α↗) R (α is an increasing function on [a , b]) meanwhile α is continuous at y_0 where a≤y_0 ≤b . defining f(x)= { (( 1 x=y_0 )),(( 0 x≠y_0 )) :} prove that : f∈ R (α) .... Hint: f∈R (α) ⇔ ∀ ε>0 ∃ P_ε ; U(P_ε ,f,α)−L(P_ε ,f,α)<ε Reimann criterion ....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{mathematical}\:....{analysis}..... \\ $$$$\:\:{suppose}\:\:\:\:{f}\::\left[{a}\:,\:{b}\right]\rightarrow\mathbb{R}\:{is}\:{a}\:{function} \\ $$$$\:\:\:{and}\:\:\:\alpha:\left[{a}\:,\:{b}\right]\overset{\alpha\nearrow} {\rightarrow}\mathbb{R}\:\left(\alpha\:{is}\:{an}\:{increasing}\:{function}\right. \\ $$$$\left.\:{on}\:\left[{a}\:,\:{b}\right]\right)\:\:{meanwhile}\:\alpha\:{is}\:{continuous}\:{at}\:{y}_{\mathrm{0}} \: \\ $$$$\:\:{where}\:\:\:{a}\leqslant{y}_{\mathrm{0}} \leqslant{b}\:\:.\:{defining}\: \\ $$$$\:\:\:{f}\left({x}\right)=\begin{cases}{\:\mathrm{1}\:\:\:\:\:\:\:\:\:{x}={y}_{\mathrm{0}} }\\{\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:{x}\neq{y}_{\mathrm{0}} }\end{cases} \\ $$$$\:\:\:\:{prove}\:\:{that}\::\:{f}\in\:\mathscr{R}\:\left(\alpha\right)\:.... \\ $$$$\:\:\:\:{Hint}:\:{f}\in\mathscr{R}\:\left(\alpha\right)\:\Leftrightarrow\:\forall\:\epsilon>\mathrm{0}\:\exists\:{P}_{\epsilon} \:;\:{U}\left({P}_{\epsilon} ,{f},\alpha\right)−{L}\left({P}_{\epsilon} ,{f},\alpha\right)<\epsilon \\ $$$$\:\:\:\:{Reimann}\:\:{criterion}\:.... \\ $$

Question Number 138730    Answers: 0   Comments: 0

Question Number 138728    Answers: 0   Comments: 0

∫_0 ^∞ ((ln(1+cos x))/(1+e^x ))dx=0

$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}{\mathrm{1}+{e}^{{x}} }{dx}=\mathrm{0} \\ $$

Question Number 138723    Answers: 0   Comments: 2

........advanced... ... ...math...... prove that _∗^∗ :::: 𝛀=Σ_(k=0) ^∞ {(1/(16^k ))((4/(8k+1))−(2/(8k+4))−(1/(8k+5))−(1/(8k+6)))}=π ....Bailey−Borwein formula....

$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:........{advanced}...\:...\:...{math}...... \\ $$$$\:{prove}\:{that}\:_{\ast} ^{\ast} \:\::::: \\ $$$$\:\:\:\boldsymbol{\Omega}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\left(\frac{\mathrm{4}}{\mathrm{8}{k}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{8}{k}+\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{6}}\right)\right\}=\pi \\ $$$$\:\:\:\:\:\:\:\:\:....{Bailey}−{Borwein}\:{formula}.... \\ $$$$\:\:\: \\ $$

Question Number 138725    Answers: 1   Comments: 0

Solve for real numbers ((sin(sinx))/(sinx)) + ((cos(cosx))/(cosx)) = 1

$${Solve}\:{for}\:{real}\:{numbers} \\ $$$$\frac{{sin}\left({sinx}\right)}{{sinx}}\:+\:\frac{{cos}\left({cosx}\right)}{{cosx}}\:=\:\mathrm{1} \\ $$

Question Number 138716    Answers: 1   Comments: 0

∫_2 ^∞ (1/(x^2 lnx))dx converges or diverges?

$$\int_{\mathrm{2}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}\mathrm{dx}\: \\ $$$$\mathrm{converges}\:\mathrm{or}\:\mathrm{diverges}? \\ $$

Question Number 138818    Answers: 0   Comments: 0

Question Number 138710    Answers: 4   Comments: 0

∫^( ∞) _1 ((ln x)/((1+x)(1+x^2 ))) dx =?

$$\underset{\mathrm{1}} {\int}^{\:\infty} \:\frac{\mathrm{ln}\:{x}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:=? \\ $$

Question Number 138708    Answers: 1   Comments: 0

lim_(x→0) ((sin x−tan x)/((((1+x^2 ))^(1/3) −1)((√(1+sin x))−1)))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}−\mathrm{1}\right)}=? \\ $$

Question Number 138696    Answers: 1   Comments: 1

Question Number 138695    Answers: 0   Comments: 0

Question Number 138691    Answers: 1   Comments: 0

∫ cos 2x (√(1+sin^2 x)) dx =?

$$\int\:\mathrm{cos}\:\mathrm{2}{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\:=? \\ $$

Question Number 138683    Answers: 1   Comments: 0

...nice .. ... ... calculus... find the value of: Θ=Σ_(n=1) ^∞ (((−1)^n sin^2 (n))/n)=? .........................

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:..\:...\:...\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {sin}^{\mathrm{2}} \left({n}\right)}{{n}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......................... \\ $$

Question Number 138690    Answers: 1   Comments: 1

((x/(12)))^(log_(√3) x) =((x/(18)))^(log_(√2) x) find x

$$\left(\frac{\mathrm{x}}{\mathrm{12}}\right)^{\mathrm{log}_{\sqrt{\mathrm{3}}} \mathrm{x}} =\left(\frac{\mathrm{x}}{\mathrm{18}}\right)^{\mathrm{log}_{\sqrt{\mathrm{2}}} \mathrm{x}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$

Question Number 138673    Answers: 4   Comments: 3

x^2 −x=72 y^2 −y=30 x+y=4 x−y=?

$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}=\mathrm{72} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{4} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}=? \\ $$

Question Number 138661    Answers: 0   Comments: 3

Question Number 138658    Answers: 1   Comments: 2

Question Number 138656    Answers: 1   Comments: 0

I=∫(dx/((px+q)(√(ax^2 +bx+c))))

$${I}=\int\frac{{dx}}{\left({px}+{q}\right)\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}} \\ $$

Question Number 138643    Answers: 2   Comments: 0

Question Number 138641    Answers: 1   Comments: 0

Question Number 138628    Answers: 1   Comments: 1

find the region in which the function f(z)=((log(z−2i))/(z^2 +1)) is analytic ? help me sir

$${find}\:{the}\:{region}\:{in}\:{which}\:{the}\:{function}\: \\ $$$$ \\ $$$${f}\left({z}\right)=\frac{{log}\left({z}−\mathrm{2}{i}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:{is}\:{analytic}\:? \\ $$$$ \\ $$$${help}\:{me}\:{sir}\: \\ $$

Question Number 138627    Answers: 2   Comments: 1

x^2 =16^x find x

$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\mathrm{16}^{\boldsymbol{\mathrm{x}}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$

  Pg 773      Pg 774      Pg 775      Pg 776      Pg 777      Pg 778      Pg 779      Pg 780      Pg 781      Pg 782   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com