Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 778

Question Number 140899    Answers: 0   Comments: 2

Question Number 140896    Answers: 2   Comments: 0

the function f with variable x satisfies the equation x^2 f ′(x) +2x f(x) = arctan x for 0 < arctan x <(π/2) and f(1)=(π/4). find f(x).

$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\:\mathrm{with}\:\mathrm{variable}\:\mathrm{x} \\ $$$$\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{x}^{\mathrm{2}} \:\mathrm{f}\:'\left(\mathrm{x}\right)\:+\mathrm{2x}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{arctan}\:\mathrm{x}\:\mathrm{for}\: \\ $$$$\mathrm{0}\:<\:\mathrm{arctan}\:\mathrm{x}\:<\frac{\pi}{\mathrm{2}}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}. \\ $$$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right). \\ $$

Question Number 140890    Answers: 1   Comments: 0

1+2x+3x^2 +4x^3 +...+(n+1)x^n =?

$$\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...+\left({n}+\mathrm{1}\right){x}^{\boldsymbol{{n}}} =? \\ $$

Question Number 140874    Answers: 2   Comments: 1

Question Number 140869    Answers: 1   Comments: 0

the velocities of air particles above and below the wing of an aircraft speeding down the runway at a given instant are 210m/s and 200m/s respectively.If the density of air is 1.2kg/m^3 ,what is the pressure difference between the upper and lower surface of the wing?

$${the}\:\mathrm{velocities}\:\mathrm{of}\:\mathrm{air}\:\mathrm{particles}\: \\ $$$$\mathrm{above}\:\mathrm{and}\:\mathrm{below}\:\mathrm{the}\:\mathrm{wing}\:\mathrm{of}\:\mathrm{an}\:\mathrm{aircraft} \\ $$$$\:\mathrm{speeding}\:\mathrm{down}\:\mathrm{the}\:\mathrm{runway}\:\mathrm{at}\:\mathrm{a} \\ $$$$\:\mathrm{given}\:\mathrm{instant} \\ $$$$\mathrm{are}\:\mathrm{210m}/\mathrm{s}\:\mathrm{and}\:\mathrm{200m}/\mathrm{s}\: \\ $$$$\mathrm{respectively}.\mathrm{If}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{air}\:\mathrm{is}\: \\ $$$$\mathrm{1}.\mathrm{2kg}/\mathrm{m}^{\mathrm{3}} ,\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pressure} \\ $$$$\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{and} \\ $$$$\mathrm{lower}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wing}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 140866    Answers: 1   Comments: 0

∫_0 ^1 ((ln 2−ln (1+x^2 ))/(1−x)) dx =?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{2}−\mathrm{ln}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$

Question Number 140870    Answers: 1   Comments: 0

Ocean waves are observed to travel along the water surface during a developing storm. A Coast Guard weather station observes that there is a vertical distance from high point to low point of 4.6 meters and horizontal distance of 8.6 meters between adjacent crests.The waves splash into the station once every 6.2 seconds Determine the frequency and the speeed of these waves.

$${O}\mathrm{cean}\:\mathrm{waves}\:\mathrm{are}\:\mathrm{observed}\:\mathrm{to} \\ $$$$\mathrm{travel}\:\mathrm{along}\:\mathrm{the}\:\mathrm{water}\:\mathrm{surface} \\ $$$$\:\mathrm{during}\:\mathrm{a}\:\mathrm{developing}\:\mathrm{storm}. \\ $$$$\mathrm{A}\:\mathrm{Coast}\:\mathrm{Guard}\:\mathrm{weather}\:\mathrm{station} \\ $$$$\:\mathrm{observes}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vertical}\: \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{high}\:\mathrm{point}\:\mathrm{to}\:\mathrm{low} \\ $$$$\:\mathrm{point}\:\mathrm{of}\:\mathrm{4}.\mathrm{6}\:\mathrm{meters}\:\mathrm{and}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\mathrm{8}.\mathrm{6}\:\mathrm{meters}\:\mathrm{between}\: \\ $$$$\mathrm{adjacent}\:\mathrm{crests}.\mathrm{The}\:\mathrm{waves}\:\mathrm{splash}\: \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{station}\:\mathrm{once}\:\mathrm{every}\:\mathrm{6}.\mathrm{2}\:\mathrm{seconds} \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{frequency}\:\mathrm{and} \\ $$$$\:\mathrm{the}\:\mathrm{speeed}\:\mathrm{of}\:\mathrm{these}\:\mathrm{waves}. \\ $$

Question Number 140863    Answers: 1   Comments: 4

1+(√3^a ) = 2(√2^a )

$$\mathrm{1}+\sqrt{\mathrm{3}^{\boldsymbol{{a}}} }\:=\:\mathrm{2}\sqrt{\mathrm{2}^{\boldsymbol{{a}}} } \\ $$

Question Number 140888    Answers: 1   Comments: 0

Question Number 140885    Answers: 1   Comments: 0

....... Advanced ::::::::::★★★:::::::::: Calculus....... find the value of the infinite series:: Θ := Σ_(n=1) ^∞ (((−1)^(n−1) H_( 2n) )/(2n−1)) = ??? .......M.N.july.1970........

$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:.......\:{Advanced}\:::::::::::\bigstar\bigstar\bigstar::::::::::\:{Calculus}....... \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:\:{the}\:{infinite}\:{series}:: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\Theta\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \mathrm{H}_{\:\mathrm{2}{n}} }{\mathrm{2}{n}−\mathrm{1}}\:=\:??? \\ $$$$\:\:\:\:\:\:\:\:\:\:.......\mathscr{M}.\mathscr{N}.{july}.\mathrm{1970}........ \\ $$

Question Number 140838    Answers: 0   Comments: 4

Question Number 140834    Answers: 0   Comments: 4

hi, sirs ! please, how to solve this thing below (a ∈ R) { ((x_1 −x_2 = a)),((x_2 −x_3 = 2a)),((.................)),((.................)),((................)),((x_(n−1) − x_n = (n−1)a)),((x_1 + x_2 + ... + x_(n−1) + x_n = na)) :}

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{sirs}}\:! \\ $$$$\boldsymbol{\mathrm{please}},\:\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{thing}}\:\boldsymbol{\mathrm{below}}\:\left(\boldsymbol{{a}}\:\in\:\mathbb{R}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}_{\mathrm{1}} −\boldsymbol{{x}}_{\mathrm{2}} \:=\:\boldsymbol{{a}}}\\{\boldsymbol{{x}}_{\mathrm{2}} −\boldsymbol{{x}}_{\mathrm{3}} \:=\:\mathrm{2}\boldsymbol{{a}}}\\{.................}\\{.................}\\{................}\\{\boldsymbol{{x}}_{\boldsymbol{{n}}−\mathrm{1}} −\:\boldsymbol{{x}}_{\boldsymbol{{n}}} \:=\:\left(\boldsymbol{{n}}−\mathrm{1}\right)\boldsymbol{{a}}}\\{\boldsymbol{{x}}_{\mathrm{1}} +\:\boldsymbol{{x}}_{\mathrm{2}} +\:...\:+\:\boldsymbol{{x}}_{\boldsymbol{{n}}−\mathrm{1}} +\:\boldsymbol{{x}}_{\boldsymbol{{n}}} \:=\:\boldsymbol{{na}}}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Question Number 140833    Answers: 3   Comments: 1

Determine if the series Σ_(n=1) ^∞ a_n defined by the formula converges or diverges . a_1 = 4 , a_(n+1) = ((10+sin n)/n). a_n

$$\mathrm{Determine}\:\mathrm{if}\:\mathrm{the}\:\mathrm{series}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\mathrm{the}\:\:\mathrm{formula}\:\mathrm{converges}\:\mathrm{or} \\ $$$$\mathrm{diverges}\:.\:\mathrm{a}_{\mathrm{1}} =\:\mathrm{4}\:,\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\frac{\mathrm{10}+\mathrm{sin}\:\mathrm{n}}{\mathrm{n}}.\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 140831    Answers: 1   Comments: 0

......nice .... calculus...... prove that:: ξ := ∫_(−∞) ^( ∞) ((cos (πx^2 ))/(cosh(πx)))dx=(1/( (√2))) .... .......

$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:......{nice}\:....\:{calculus}...... \\ $$$$\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\xi\::=\:\int_{−\infty} ^{\:\infty} \frac{{cos}\:\left(\pi{x}^{\mathrm{2}} \right)}{{cosh}\left(\pi{x}\right)}{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:.... \\ $$$$\:\:\:\:....... \\ $$

Question Number 140829    Answers: 1   Comments: 0

factorise 5x^(2m) 8x^m +8

$${factorise}\:\mathrm{5}{x}^{\mathrm{2}{m}} \mathrm{8}{x}^{{m}} +\mathrm{8} \\ $$

Question Number 140828    Answers: 2   Comments: 0

factorise 3k^2 +2kh−8h^2

$$\mathrm{factorise}\:\mathrm{3k}^{\mathrm{2}} \:+\mathrm{2kh}−\mathrm{8h}^{\mathrm{2}} \\ $$

Question Number 140827    Answers: 1   Comments: 0

Find 1. ∫(dx/([x]^2 )) , x≥1 2. ∫(([x]^λ )/x^(λ+1) ) , x≥1 Where [∗] denote the integer part

$${Find} \\ $$$$\mathrm{1}.\:\int\frac{{dx}}{\left[{x}\right]^{\mathrm{2}} }\:,\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{2}.\:\int\frac{\left[{x}\right]^{\lambda} }{{x}^{\lambda+\mathrm{1}} }\:,\:{x}\geqslant\mathrm{1} \\ $$$${Where}\:\left[\ast\right]\:{denote}\:{the}\:{integer}\:{part} \\ $$

Question Number 140826    Answers: 0   Comments: 0

Question Number 140825    Answers: 1   Comments: 0

Use the limit comparison test to determine if the series converges or diverges Σ_(n=2) ^∞ (1/(7+8n ln (ln n))).

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{comparison}\:\mathrm{test} \\ $$$$\mathrm{to}\:\mathrm{determine}\:\mathrm{if}\:\mathrm{the}\:\mathrm{series}\:\mathrm{converges} \\ $$$$\mathrm{or}\:\mathrm{diverges}\: \\ $$$$\:\underset{\mathrm{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{7}+\mathrm{8n}\:\mathrm{ln}\:\left(\mathrm{ln}\:\mathrm{n}\right)}.\: \\ $$

Question Number 140823    Answers: 1   Comments: 1

Determine whether the improper integral converges or diverges ∫_1 ^( ∞) ((2x+7)/(7x^3 +5x^2 +1)) dx

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{improper} \\ $$$$\mathrm{integral}\:\mathrm{converges}\:\mathrm{or}\:\mathrm{diverges}\: \\ $$$$\int_{\mathrm{1}} ^{\:\infty} \:\frac{\mathrm{2x}+\mathrm{7}}{\mathrm{7x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$

Question Number 140821    Answers: 0   Comments: 1

O is centre of circle and square. find yellow area in terms of radius of circle

$${O}\:{is}\:{centre}\:{of}\:{circle}\:{and}\:{square}. \\ $$$${find}\:{yellow}\:{area}\:{in}\:{terms}\:{of}\:{radius}\: \\ $$$${of}\:{circle} \\ $$

Question Number 140816    Answers: 0   Comments: 0

Question Number 140815    Answers: 0   Comments: 0

Question Number 140813    Answers: 0   Comments: 0

Question Number 142208    Answers: 1   Comments: 0

Find the equation of the circle which is orthogonal to the circles x^2 +y^2 −7x−y=0 and x^2 +y^2 +3x−6y+5=0 and which passes through the point (−3,0).

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{which}\:\mathrm{is} \\ $$$$\mathrm{orthogonal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{7}{x}−{y}=\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{6}{y}+\mathrm{5}=\mathrm{0}\:\mathrm{and}\:\mathrm{which}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\left(−\mathrm{3},\mathrm{0}\right). \\ $$

Question Number 142207    Answers: 2   Comments: 0

  Pg 773      Pg 774      Pg 775      Pg 776      Pg 777      Pg 778      Pg 779      Pg 780      Pg 781      Pg 782   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com