Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 770

Question Number 141750    Answers: 1   Comments: 0

Question Number 141749    Answers: 1   Comments: 0

{ ((x^2 −y+(√(y^2 +5))=xy−(√(x−1)))),((y^2 +(√(xy+2))=2(x+y))) :} Find x,y

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{5}}=\mathrm{xy}−\sqrt{\mathrm{x}−\mathrm{1}}}\\{\mathrm{y}^{\mathrm{2}} +\sqrt{\mathrm{xy}+\mathrm{2}}=\mathrm{2}\left(\mathrm{x}+\mathrm{y}\right)}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{x},\mathrm{y} \\ $$

Question Number 141777    Answers: 0   Comments: 1

A pack of 52 cards distributed equally to 4 people so as 4 cards each from same suit( of any 3 suit=4×3=12) and last card from 4th remaining suit . Number of such distributions is?

$${A}\:{pack}\:{of}\:\mathrm{52}\:{cards}\:{distributed}\:{equally}\:{to} \\ $$$$\mathrm{4}\:{people}\:{so}\:{as}\:\mathrm{4}\:{cards}\:{each}\:{from}\: \\ $$$${same}\:{suit}\left(\:{of}\:{any}\:\mathrm{3}\:{suit}=\mathrm{4}×\mathrm{3}=\mathrm{12}\right) \\ $$$${and}\:{last}\:{card}\:{from}\:\mathrm{4}{th}\:{remaining} \\ $$$${suit}\:.\:{Number}\:{of}\:{such} \\ $$$${distributions}\:{is}? \\ $$$$ \\ $$$$ \\ $$

Question Number 141733    Answers: 0   Comments: 0

Question Number 141730    Answers: 0   Comments: 2

x^2 +y^2 +xy=9 y^2 +z^2 +yz=16 x^2 +z^2 +xz=25 xy+yz+xz=?

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{9} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{yz}=\mathrm{16} \\ $$$${x}^{\mathrm{2}} +{z}^{\mathrm{2}} +{xz}=\mathrm{25} \\ $$$${xy}+{yz}+{xz}=? \\ $$

Question Number 141753    Answers: 2   Comments: 1

∫(dx/(sinx+cosx))

$$\int\frac{{dx}}{{sinx}+{cosx}} \\ $$

Question Number 141781    Answers: 0   Comments: 2

help me to find the roots of x^5 +5x^4 +20x^3 +60x^2 +120x+120=0?

$${help}\:{me}\:{to}\:{find}\:{the}\:{roots}\:{of}\: \\ $$$${x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} +\mathrm{20}{x}^{\mathrm{3}} +\mathrm{60}{x}^{\mathrm{2}} +\mathrm{120}{x}+\mathrm{120}=\mathrm{0}? \\ $$

Question Number 141794    Answers: 2   Comments: 2

Question Number 141779    Answers: 4   Comments: 0

lim_(x→0) (x^2 /(x+2−2(√(1+x)))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2}} }{{x}+\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:=? \\ $$

Question Number 141747    Answers: 0   Comments: 0

Question Number 141776    Answers: 1   Comments: 0

The volume of a sphere is increasing at the constant rate of 10cm^3 /sec. Calculate the rate of increase of the surface area at the instant when the radius is 5cm.What is the radius of the sphere when the surface area is increasing at 2cm^2 /sec. Any step by step solution pls.

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{volume}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{sphere}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{increasing}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{constant}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{of}}\:\mathrm{10}\boldsymbol{\mathrm{cm}}^{\mathrm{3}} /\boldsymbol{\mathrm{sec}}. \\ $$$$\boldsymbol{\mathrm{Calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{rate}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{increase}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\: \\ $$$$\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{instant}}\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{is}}\:\mathrm{5}\boldsymbol{\mathrm{cm}}.\boldsymbol{\mathrm{What}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{sphere}}\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{increasing}} \\ $$$$\boldsymbol{\mathrm{at}}\:\mathrm{2}\boldsymbol{\mathrm{cm}}^{\mathrm{2}} /\boldsymbol{\mathrm{sec}}. \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{step}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{step}}\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{pls}}. \\ $$

Question Number 141719    Answers: 2   Comments: 0

∫_0 ^∞ (e^(−x^2 ) /((x^2 +(1/2))^2 ))dx=?

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}=? \\ $$

Question Number 141716    Answers: 1   Comments: 0

(x^2 lnx)y′′−xy′+y=0

$$\left({x}^{\mathrm{2}} {lnx}\right){y}''−{xy}'+{y}=\mathrm{0} \\ $$

Question Number 141715    Answers: 1   Comments: 0

Find x if Σ_(n=2) ^(24) ((250)/((1+x)^n )) = 5000.

$$\mathrm{Find}\:\mathrm{x}\:\mathrm{if}\:\underset{\mathrm{n}=\mathrm{2}} {\overset{\mathrm{24}} {\sum}}\frac{\mathrm{250}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} }\:=\:\mathrm{5000}. \\ $$

Question Number 141713    Answers: 1   Comments: 0

Question Number 141708    Answers: 0   Comments: 0

2(8n^3 +m^3 )+6(m^2 −6n^2 )+3(2m+9n)=437 Find all positive values of mn....?

$$\mathrm{2}\left(\mathrm{8}{n}^{\mathrm{3}} +{m}^{\mathrm{3}} \right)+\mathrm{6}\left({m}^{\mathrm{2}} −\mathrm{6}{n}^{\mathrm{2}} \right)+\mathrm{3}\left(\mathrm{2}{m}+\mathrm{9}{n}\right)=\mathrm{437}\: \\ $$$${Find}\:{all}\:{positive}\:\:{values}\:{of}\:{mn}....? \\ $$

Question Number 142229    Answers: 1   Comments: 0

deveopp g(x)=(1/(sin(nx))) at fourier series (x≠((kπ)/n))

$$\mathrm{deveopp}\:\mathrm{g}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{nx}\right)}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{series}\:\left(\mathrm{x}\neq\frac{\mathrm{k}\pi}{\mathrm{n}}\right) \\ $$

Question Number 142228    Answers: 1   Comments: 0

developpf(x)=(2/(3+cosx)) at fourier serie

$$\mathrm{developpf}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\mathrm{3}+\mathrm{cosx}}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$

Question Number 141703    Answers: 0   Comments: 2

Question Number 141700    Answers: 0   Comments: 2

Question Number 141699    Answers: 1   Comments: 0

If lim_(x→1) =(((x)^(1/k) −1)/(x−1))=L≠0 Find lim_(x→0) (((√(x+1))−1)/( ((x+1))^(1/k) −1))

$${If}\:{lim}_{{x}\rightarrow\mathrm{1}} =\frac{\sqrt[{{k}}]{{x}}−\mathrm{1}}{{x}−\mathrm{1}}={L}\neq\mathrm{0}\:\:{Find}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt[{{k}}]{{x}+\mathrm{1}}−\mathrm{1}} \\ $$

Question Number 142231    Answers: 0   Comments: 0

find ∫ ((ch(x))/(cosx))dx

$$\mathrm{find}\:\int\:\frac{\mathrm{ch}\left(\mathrm{x}\right)}{\mathrm{cosx}}\mathrm{dx} \\ $$

Question Number 142232    Answers: 1   Comments: 0

Question Number 142236    Answers: 2   Comments: 0

f is an endomorphism of V such that f○f=−Id_V . 1. Show that f is an isomorphism of V and express f^(−1) in function of f. 2. show that 0^→ is the one invariant vector by f. 3. Given u^→ ≠0^→ and u^→ ∈ V. a. Show that (u^→ ; f(u^→ )) is a base of V. b. Write the matrix of f in base (u^→ ; f(u^→ )).

$$\mathrm{f}\:\mathrm{is}\:\mathrm{an}\:\mathrm{endomorphism}\:\mathrm{of}\:\mathrm{V}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{f}\circ\mathrm{f}=−\mathrm{Id}_{\mathrm{V}} \:. \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{f}\:\mathrm{is}\:\mathrm{an}\:\mathrm{isomorphism}\:\mathrm{of} \\ $$$$\mathrm{V}\:\mathrm{and}\:\mathrm{express}\:\mathrm{f}^{−\mathrm{1}} \:\mathrm{in}\:\mathrm{function}\:\mathrm{of}\:\mathrm{f}. \\ $$$$\mathrm{2}.\:\mathrm{show}\:\mathrm{that}\:\overset{\rightarrow} {\mathrm{0}}\:\mathrm{is}\:\mathrm{the}\:\mathrm{one}\:\mathrm{invariant} \\ $$$$\mathrm{vector}\:\mathrm{by}\:\mathrm{f}. \\ $$$$\mathrm{3}.\:\mathrm{Given}\:\overset{\rightarrow} {\mathrm{u}}\neq\overset{\rightarrow} {\mathrm{0}}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{u}}\:\in\:\mathrm{V}. \\ $$$$\mathrm{a}.\:\mathrm{Show}\:\mathrm{that}\:\left(\overset{\rightarrow} {\mathrm{u}};\:\mathrm{f}\left(\overset{\rightarrow} {\mathrm{u}}\right)\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{base}\:\mathrm{of}\:\mathrm{V}. \\ $$$$\mathrm{b}.\:\mathrm{Write}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{f}\:\mathrm{in}\:\mathrm{base} \\ $$$$\left(\overset{\rightarrow} {\mathrm{u}};\:\mathrm{f}\left(\overset{\rightarrow} {\mathrm{u}}\right)\right). \\ $$

Question Number 141694    Answers: 0   Comments: 0

log((((√5)+1)/(10))9e^γ )=((ζ(2))/2)(((1^2 +9^2 )/(10^2 )))−((ζ(3))/3) (((1^3 +9^3 )/(10^3 )) )+((ζ(4))/4)(((1^4 +9^4 )/(10^4 )))−... γ=Euler Mascheroni Constant

$${log}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{10}}\mathrm{9}{e}^{\gamma} \right)=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}}\left(\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} }{\mathrm{10}^{\mathrm{2}} }\right)−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}}\:\left(\frac{\mathrm{1}^{\mathrm{3}} +\mathrm{9}^{\mathrm{3}} }{\mathrm{10}^{\mathrm{3}} }\:\right)+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}}\left(\frac{\mathrm{1}^{\mathrm{4}} +\mathrm{9}^{\mathrm{4}} }{\mathrm{10}^{\mathrm{4}} }\right)−... \\ $$$$\gamma={Euler}\:{Mascheroni}\:{Constant} \\ $$

Question Number 141693    Answers: 0   Comments: 0

n∈N^+ a_5 =a_(13) =0 b_(n+1) −b_n =2 b_n =a_(n+1) −a_n ⇒ a_1 =?

$${n}\in{N}^{+} \\ $$$${a}_{\mathrm{5}} ={a}_{\mathrm{13}} =\mathrm{0} \\ $$$${b}_{{n}+\mathrm{1}} −{b}_{{n}} =\mathrm{2} \\ $$$${b}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} \:\:\:\Rightarrow\:\:{a}_{\mathrm{1}} =? \\ $$$$ \\ $$

  Pg 765      Pg 766      Pg 767      Pg 768      Pg 769      Pg 770      Pg 771      Pg 772      Pg 773      Pg 774   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com