Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 768

Question Number 142740    Answers: 3   Comments: 3

(a/(b+c)) = (b/(a+c)) = (c/(a+b)) ; a∙b∙c = 12 (b+c)∙(a+c)∙(a+b) = ?

$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:\:;\:\:{a}\centerdot{b}\centerdot{c}\:=\:\mathrm{12} \\ $$$$\left({b}+{c}\right)\centerdot\left({a}+{c}\right)\centerdot\left({a}+{b}\right)\:=\:? \\ $$

Question Number 142730    Answers: 0   Comments: 1

x^x^(30) =(√)2^(1/2)

$${x}^{{x}^{\mathrm{30}} } =\sqrt{}\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Question Number 142729    Answers: 1   Comments: 0

prove:(d/dz)(tan^(−1) z)=(1/(1+z^2 )) in complex number help me sir

$${prove}:\frac{{d}}{{dz}}\left({tan}^{−\mathrm{1}} {z}\right)=\frac{\mathrm{1}}{\mathrm{1}+{z}^{\mathrm{2}} }\:{in}\:{complex}\:{number} \\ $$$${help}\:{me}\:{sir} \\ $$$$ \\ $$

Question Number 142725    Answers: 1   Comments: 7

Question Number 142724    Answers: 2   Comments: 0

∫_0 ^(π/2) ((sin(2t))/(1+xsin(2t)))dt=....

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{xsin}\left(\mathrm{2}{t}\right)}{dt}=.... \\ $$

Question Number 142723    Answers: 1   Comments: 0

....... discrete ..... mathematics....... prove that: Σ_(n=1) ^∞ (1/(F_(2n+1) −1))=^? ((5−(√5))/2) F_n :: fibonacci sequence...

$$\:\:\:\:\:\:\:\:.......\:{discrete}\:\:.....\:\:{mathematics}....... \\ $$$$\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{F}_{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1}}\overset{?} {=}\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{F}_{{n}} \:::\:{fibonacci}\:\:{sequence}... \\ $$

Question Number 142721    Answers: 1   Comments: 0

lim_(x→0) (x/( (√(1−cos x))))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}=? \\ $$

Question Number 142719    Answers: 0   Comments: 1

find the particular solution to the differential equation y^((4)) +21y^((2)) −100y=4(8−29t)e^(−2t) . solution please.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{y}^{\left(\mathrm{4}\right)} +\mathrm{21y}^{\left(\mathrm{2}\right)} −\mathrm{100y}=\mathrm{4}\left(\mathrm{8}−\mathrm{29t}\right)\mathrm{e}^{−\mathrm{2t}} . \\ $$$$\mathrm{solution}\:\mathrm{please}. \\ $$

Question Number 142717    Answers: 2   Comments: 1

Question Number 142765    Answers: 1   Comments: 1

A class has 13 children. To play a game one child is the referee and the other children are divided in three teams with four children in each team. In how many ways can the class play the game?

$${A}\:{class}\:{has}\:\mathrm{13}\:{children}.\:{To}\:{play}\:{a} \\ $$$${game}\:{one}\:{child}\:{is}\:{the}\:{referee}\:{and}\:{the} \\ $$$${other}\:{children}\:{are}\:{divided}\:{in}\:{three}\: \\ $$$${teams}\:{with}\:{four}\:{children}\:{in}\:{each}\:{team}. \\ $$$${In}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{class}\:{play} \\ $$$${the}\:{game}? \\ $$

Question Number 142763    Answers: 2   Comments: 2

Question Number 142712    Answers: 0   Comments: 0

Question Number 142710    Answers: 1   Comments: 0

Let k be non-negative real numbers and n ∈ N^+ ≥1. Prove that (((4−k)/(4+k)))(((12−k)/(12+k)))...[((2n(n+1)−k)/(2n(n+1)+k))] ≤ ((n+k+1)/((n+1)(k+1)))

$$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{and}\:{n}\:\in\:\mathrm{N}^{+} \geqslant\mathrm{1}.\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{4}−{k}}{\mathrm{4}+{k}}\right)\left(\frac{\mathrm{12}−{k}}{\mathrm{12}+{k}}\right)...\left[\frac{\mathrm{2}{n}\left({n}+\mathrm{1}\right)−{k}}{\mathrm{2}{n}\left({n}+\mathrm{1}\right)+{k}}\right]\:\leqslant\:\frac{{n}+{k}+\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)} \\ $$$$ \\ $$

Question Number 142708    Answers: 1   Comments: 0

I=∫_0 ^( α) (√(c^2 −sin^2 θ))dθ tan α=(a^2 /b^2 ) , a^2 >b^2 , c^2 >1 Perimeter of ellipse =4∫_0 ^( π/2) (√(a^2 −(a^2 −b^2 )sin^2 θ)) dθ (is that right sir?)

$$\:{I}=\int_{\mathrm{0}} ^{\:\:\alpha} \sqrt{{c}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \theta}{d}\theta \\ $$$$\:\mathrm{tan}\:\alpha=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:,\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \:\:,\:{c}^{\mathrm{2}} >\mathrm{1} \\ $$$${Perimeter}\:{of}\:{ellipse} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\left({is}\:{that}\:{right}\:{sir}?\right) \\ $$

Question Number 142698    Answers: 1   Comments: 0

Prove that ∀n∈N^∗ Π_(k=1) ^(n−1) sin(((kπ)/(2n))) = Π_(k=1) ^(n−1) cos(((kπ)/(2n)))

$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{sin}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right)\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right) \\ $$

Question Number 142691    Answers: 1   Comments: 1

The number of distributions of 52 cards divided equally to 4 persons so as each gets 4 cards of same suit taken away from 3suits(4×3=12)℘ remaining card from remaining 4 th suit is

$${The}\:{number}\:{of}\:{distributions}\:{of}\:\mathrm{52} \\ $$$${cards}\:{divided}\:{equally}\:{to}\:\mathrm{4}\:{persons}\:{so} \\ $$$${as}\:{each}\:{gets}\:\mathrm{4}\:{cards}\:{of}\:{same}\:{suit} \\ $$$${taken}\:{away}\:{from}\:\mathrm{3}{suits}\left(\mathrm{4}×\mathrm{3}=\mathrm{12}\right)\wp \\ $$$${remaining}\:{card}\:{from}\:{remaining} \\ $$$$\mathrm{4}\:{th}\:{suit}\:{is} \\ $$

Question Number 142690    Answers: 1   Comments: 0

∫_(0 ) ^1 ((log(x)log((x/(1−x))))/( (√(x/(1−x)))))dx Any help

$$\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{\boldsymbol{{log}}\left(\boldsymbol{{x}}\right)\boldsymbol{{log}}\left(\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}\right)}{\:\sqrt{\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}}}\boldsymbol{{dx}} \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}}\: \\ $$$$ \\ $$

Question Number 142689    Answers: 1   Comments: 0

Question Number 142687    Answers: 1   Comments: 0

∫ (dx/( (√(1−sin x)) (√(1+cos x)))) =?

$$\:\:\:\:\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}\:=? \\ $$

Question Number 142681    Answers: 0   Comments: 2

prove that :: 𝛗:=∫_0 ^( ∞) ((ln(1+cos(x)))/(1+e^( x) ))dx=0 ................

$$ \\ $$$$\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{cos}\left({x}\right)\right)}{\mathrm{1}+{e}^{\:{x}} }{dx}=\mathrm{0} \\ $$$$\:\:\:\:\:................ \\ $$$$ \\ $$

Question Number 142679    Answers: 0   Comments: 5

how to get exert value of a lambert w function question without wolfram alpha

$${how}\:{to}\:{get}\:{exert}\:{value}\:{of}\:{a}\:{lambert}\:{w}\:{function}\:{question}\:{without}\:{wolfram}\:{alpha} \\ $$

Question Number 142668    Answers: 3   Comments: 2

lim_(n→∞) (((n+6)/n))^(6/n) = ?

$$\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{{n}+\mathrm{6}}{{n}}\right)^{\frac{\mathrm{6}}{{n}}} =\:? \\ $$

Question Number 142667    Answers: 1   Comments: 0

Question Number 142655    Answers: 2   Comments: 0

evaluate..... Σ_(n=1) ^∞ (((n.cos(nπ))/(Γ (2n+2))))=? ..... .......

$$\:\:{evaluate}..... \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{n}.{cos}\left({n}\pi\right)}{\Gamma\:\left(\mathrm{2}{n}+\mathrm{2}\right)}\right)=?\:..... \\ $$$$\:\:\:....... \\ $$

Question Number 142656    Answers: 2   Comments: 0

∫_(−π) ^π ((xsin x)/(1+x^2 ))dx=?

$$\int_{−\pi} ^{\pi} \frac{\mathrm{xsin}\:\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=? \\ $$

Question Number 142653    Answers: 2   Comments: 0

x^3 .e^x =216

$${x}^{\mathrm{3}} .{e}^{{x}} =\mathrm{216} \\ $$

  Pg 763      Pg 764      Pg 765      Pg 766      Pg 767      Pg 768      Pg 769      Pg 770      Pg 771      Pg 772   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com