Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 768

Question Number 142256    Answers: 1   Comments: 0

∫_0 ^∞ ((sinx)/x^(1−a) )dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\mathrm{1}−{a}} }{dx} \\ $$

Question Number 141826    Answers: 0   Comments: 0

If y=sin^2 θ, x=cotθ, find (dy/dx). Any suggestion please.

$${If}\:\:{y}={sin}^{\mathrm{2}} \theta,\:{x}={cot}\theta,\:{find}\:\:\frac{{dy}}{{dx}}. \\ $$$${Any}\:{suggestion}\:{please}. \\ $$

Question Number 141825    Answers: 0   Comments: 0

If P=(3x^2 −1)^3 , when x=2, it is decreased by 3%. Find the approximate percentage change in P. Help me out pls

$$\boldsymbol{\mathrm{If}}\:\:\boldsymbol{\mathrm{P}}=\left(\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} ,\:\boldsymbol{\mathrm{when}}\:\boldsymbol{\mathrm{x}}=\mathrm{2},\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{is}} \\ $$$$\boldsymbol{\mathrm{decreased}}\:\boldsymbol{\mathrm{by}}\:\mathrm{3\%}.\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{approximate}} \\ $$$$\boldsymbol{\mathrm{percentage}}\:\boldsymbol{\mathrm{change}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{P}}. \\ $$$$\boldsymbol{\mathrm{Help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{out}}\:\boldsymbol{\mathrm{pls}} \\ $$

Question Number 141822    Answers: 0   Comments: 2

Question Number 142253    Answers: 1   Comments: 0

Question Number 142252    Answers: 1   Comments: 0

Question Number 141814    Answers: 1   Comments: 2

please help me finding the roots of x^5 +5x^4 +20x^3 +60x^2 +120x+120=0?

$${please}\:{help}\:{me}\:{finding}\:{the}\:{roots}\:{of}\:\: \\ $$$${x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} +\mathrm{20}{x}^{\mathrm{3}} +\mathrm{60}{x}^{\mathrm{2}} +\mathrm{120}{x}+\mathrm{120}=\mathrm{0}? \\ $$

Question Number 141812    Answers: 1   Comments: 2

Question Number 141811    Answers: 1   Comments: 0

Θ:=(Σ_(n=1) ^∞ (n^4 /(2^n . n!)))^(1/2) =?

$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\Theta:=\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{4}} }{\mathrm{2}^{{n}} \:.\:{n}!}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =? \\ $$

Question Number 141805    Answers: 2   Comments: 0

∫(dx/(1−tanx))

$$\int\frac{{dx}}{\mathrm{1}−{tanx}} \\ $$

Question Number 141797    Answers: 0   Comments: 0

Question Number 143584    Answers: 1   Comments: 0

{ ((x^2 −xy+y^2 =7)),(((x+3)(y−2)=(√(xy+3))+(√(xy−2)))) :} Find x,y

$$\begin{cases}{{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{7}}\\{\left({x}+\mathrm{3}\right)\left({y}−\mathrm{2}\right)=\sqrt{{xy}+\mathrm{3}}+\sqrt{{xy}−\mathrm{2}}}\end{cases} \\ $$$${Find}\:{x},{y} \\ $$

Question Number 143586    Answers: 1   Comments: 1

Question Number 141791    Answers: 4   Comments: 0

Calculate Σ_(n=1) ^(+∞) (n^2 /3^n )

$$\mathrm{Calculate} \\ $$$$\:\underset{\mathrm{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} } \\ $$

Question Number 141786    Answers: 1   Comments: 0

If y=1−cos2t and x=(√(1+t^2 )) .Show that (dy/dx)=((2(√(1+t^2 )) sin2t)/t) Help please.

$$\boldsymbol{\mathrm{If}}\:\:\boldsymbol{\mathrm{y}}=\mathrm{1}−\boldsymbol{\mathrm{cos}}\mathrm{2}\boldsymbol{\mathrm{t}}\:\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{x}}=\sqrt{\mathrm{1}+\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\:.\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\frac{\mathrm{2}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{t}}}{\boldsymbol{\mathrm{t}}} \\ $$$$\boldsymbol{\mathrm{Help}}\:\boldsymbol{\mathrm{please}}. \\ $$

Question Number 141785    Answers: 1   Comments: 0

If x=asin2t+bcos2t,prove that (dx/dt)=2(√(a^2 +b^2 −x^2 )) Solution....

$$\boldsymbol{\mathrm{If}}\:\:\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{asin}}\mathrm{2}\boldsymbol{\mathrm{t}}+\boldsymbol{\mathrm{bcos}}\mathrm{2}\boldsymbol{\mathrm{t}},\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\frac{\boldsymbol{\mathrm{dx}}}{\boldsymbol{\mathrm{dt}}}=\mathrm{2}\sqrt{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$$$\boldsymbol{\mathrm{Solution}}.... \\ $$

Question Number 141783    Answers: 0   Comments: 0

Question Number 141775    Answers: 1   Comments: 0

find ∫_0 ^∞ (e^(−x^2 ) /((x^2 +3)^2 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 141774    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (e^(−x^2 ) /(1+x^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 141769    Answers: 1   Comments: 0

If y=2sinx+tanx, prove that (d^2 y/dx^2 )=2sinx(sec^3 x−1) Any detailed solution please.

$$\boldsymbol{\mathrm{If}}\:\:\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{tanx}},\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }=\mathrm{2}\boldsymbol{\mathrm{sinx}}\left(\boldsymbol{\mathrm{sec}}^{\mathrm{3}} \boldsymbol{\mathrm{x}}−\mathrm{1}\right) \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{detailed}}\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{please}}. \\ $$

Question Number 141768    Answers: 0   Comments: 0

Let a,b,x,y > 0 and (a+x)(b+y) = (a+b)^2 . Prove that ((a−y)/x)+((b−x)/y) ≤ ((b−x)/a)+((a−y)/b)

$$\mathrm{Let}\:{a},{b},{x},{y}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{x}\right)\left({b}+{y}\right)\:=\:\left({a}+{b}\right)^{\mathrm{2}} \:.\:\:\:\:\:\:\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}−{y}}{{x}}+\frac{{b}−{x}}{{y}}\:\leqslant\:\frac{{b}−{x}}{{a}}+\frac{{a}−{y}}{{b}}\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 141759    Answers: 0   Comments: 0

Question Number 141757    Answers: 0   Comments: 1

Γ(n+(1/2))=(((√π)∙Γ(2n+1))/(2^(2n) Γ(n+1)))

$$\Gamma\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}\centerdot\Gamma\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2n}} \Gamma\left(\mathrm{n}+\mathrm{1}\right)} \\ $$

Question Number 141755    Answers: 0   Comments: 0

Question Number 141752    Answers: 1   Comments: 0

Question Number 141750    Answers: 1   Comments: 0

  Pg 763      Pg 764      Pg 765      Pg 766      Pg 767      Pg 768      Pg 769      Pg 770      Pg 771      Pg 772   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com