Given X=((β(βx))+(1/( (β(βx)))))^n .
What is the coefficient of x^(5β(n/4) ?)
propositions:
a. 5((n!)/(10!))
b. ((n!)/(5!))
c. ((n),((10)) )
d. ((n),(5) )
Let Ξ±β 1 and Ξ±^(13) =1. If a=Ξ±+Ξ±^3 +Ξ±^4 +Ξ±^(β4) +Ξ±^(β3) +
Ξ±^(β1) and b=Ξ±^2 +Ξ±^5 +Ξ±^6 +Ξ±^(β6) +Ξ±^(β5) +Ξ±^(β2) then the
quadratic equation whose roots are a and b is
(A) x^2 +x+3=0 (B) x^2 +x+4=0
(C) x^2 +xβ3=0 (D) x^2 +xβ4=0
If Ξ± and Ξ² are roots of the equation 2x^2 +ax+b=0,
then one of the roots of the equation 2(Ξ±x+Ξ²)^2 +
a(Ξ±x+Ξ²)+b=0 is
(A) 0 (B) ((Ξ±+2b)/Ξ±^2 )
(C) ((aΞ±+b)/(2Ξ±^2 )) (D) ((aΞ±β2b)/(2Ξ±^2 ))
The roots of the equation x^2 β(mβ3)x+m=0 are
such that exactly one of them lies in the interval
(1, 2). Then
(A) 5<m<7 (B) m<10
(C) 2<m<5 (D) m>10