Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 768
Question Number 142290 Answers: 1 Comments: 0
$$\:\:\:{evaluate}: \\ $$$$\:\:\:\:\:\:\Theta:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left({n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\:=? \\ $$$$\:\:\:\:\: \\ $$
Question Number 142285 Answers: 2 Comments: 0
$$\mathscr{L}\left(\frac{\mathrm{1}+\mathrm{2bt}}{\:\sqrt{\mathrm{t}}}\mathrm{e}^{\mathrm{bt}} \right)\left(\mathrm{s}\right)=? \\ $$
Question Number 142282 Answers: 1 Comments: 0
$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polygon}\:\mathrm{are}\:\mathrm{160}° \\ $$$$\mathrm{each}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{other}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{are}\:\mathrm{120}°\:\mathrm{each}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polygon}. \\ $$
Question Number 142307 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)−\mathrm{tan}\:\left(\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\right)}{\mathrm{tan}\:\mathrm{x}\centerdot\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\centerdot\mathrm{tan}\:\left(\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\right)}=? \\ $$
Question Number 142306 Answers: 0 Comments: 0
Question Number 142277 Answers: 2 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−{e}^{\mathrm{sin}\:{x}\:\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)} }{{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 142276 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \sqrt{\mathrm{1}+{e}^{\mathrm{2}{x}} }{dx} \\ $$
Question Number 142275 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:.......{Advanced}\:\:...\ast\ast\ast\ast\ast\:...{Integral}...... \\ $$$$\:\:\:\:\:\:{Prove}\:\:{that}\:::\:\:\:\Phi\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right){log}\left({x}\right)}{dx}= \\ $$$$\:\:\:{proof}:: \\ $$$$\:\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:{f}\:\left({a}\right):=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{{a}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)} \\ $$$$\:\:\:\:\:\:\:\Phi\::=\:{f}\:\left(\mathrm{2}\right)\:........\checkmark \\ $$$$\:\:\:\:\:\:\:{f}\:'\left({a}\right):=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{x}^{{a}} {log}\left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{x}^{{a}} }{\mathrm{1}−{x}^{\mathrm{3}} }{dx}\:\:\left(\bigstar\right) \\ $$$$\:\:\:\:\left(\bigstar\right)::\:\:{x}^{\mathrm{3}} ={y}\:\Rightarrow\:{f}\:'\left({a}\right):=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{y}^{\frac{−\mathrm{2}}{\mathrm{3}}} −{y}^{\frac{{a}}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{1}−{y}}{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{y}^{\frac{−\mathrm{2}}{\mathrm{3}}} −\mathrm{1}+\mathrm{1}−{y}^{\frac{{a}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{1}−{y}}{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{3}}\left(\psi\left(\frac{{a}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:{f}\:\left({a}\right):={log}\left(\Gamma\left(\frac{{a}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\right)\right)−\frac{{a}}{\mathrm{3}}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:{f}\:\left(\mathrm{0}\right):=\mathrm{0}={log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:\:{C}\::=−{log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\Phi:=\:{f}\:\left(\mathrm{2}\right)={log}\left(\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\right)−\frac{\mathrm{2}}{\mathrm{3}}\:\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−{log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\::={log}\left(\frac{\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}{\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}\right)−\frac{\mathrm{2}}{\mathrm{3}}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:....\checkmark \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Question Number 142273 Answers: 0 Comments: 1
$$\:\:\underset{\frac{\mathrm{1}}{\mathrm{3}}} {\overset{\mathrm{3}} {\int}}\:\frac{{x}+\mathrm{sin}\:\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{x}\left(\mathrm{2}+\mathrm{cos}\:\left({x}+\frac{\mathrm{1}}{{x}}\right)\right)}\:{dx}\:? \\ $$
Question Number 142164 Answers: 0 Comments: 1
Question Number 142151 Answers: 0 Comments: 1
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}}\:=? \\ $$
Question Number 142150 Answers: 1 Comments: 1
$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right)\:=?\: \\ $$
Question Number 142149 Answers: 5 Comments: 0
$$\mathrm{6}.\:\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}} \\ $$$$\mathrm{7}.\:\int\frac{\mathrm{4}{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}} \\ $$$$\mathrm{8}.\:\int\frac{\mathrm{3}−\mathrm{2}{xdx}}{{x}^{\mathrm{2}} −\mathrm{64}} \\ $$$$\mathrm{9}.\:\int\frac{\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{6}{x}}{dx} \\ $$$$\mathrm{10}.\:\int\frac{\mathrm{4}−\mathrm{3}{x}}{{x}^{\mathrm{3}} −\mathrm{2}{x}}{dx} \\ $$$$\mathrm{11}.\:\int\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{2}{x}+{x}} \\ $$$$ \\ $$
Question Number 142148 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}=? \\ $$
Question Number 142140 Answers: 1 Comments: 0
$$\left[\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{{x}}\right]=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left[\frac{\mathrm{100sin}^{−\mathrm{1}} {x}}{{x}}\right]+\left[\frac{\mathrm{100tan}^{−\mathrm{1}} {x}}{{x}}\right]\right\}=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left[\frac{\mathrm{100}{x}}{\mathrm{sin}^{−\mathrm{1}} {x}}\right]+\left[\frac{\mathrm{100}{x}}{\mathrm{tan}^{−\mathrm{1}} {x}}\right]\right\}=? \\ $$$${where}\:\left[{x}\right]\:{denotes}\:{greatest}\:{integer}\: \\ $$$${less}\:{than}\:{or}\:{equal}\:{to}\:{x}. \\ $$$${solution}\:{please} \\ $$
Question Number 142138 Answers: 0 Comments: 6
$$\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\:+\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+\:\sqrt{{z}^{\mathrm{2}} +\mathrm{9}}\:=\:\mathrm{10} \\ $$$${x}+{y}+{z}=? \\ $$
Question Number 142131 Answers: 1 Comments: 1
$$\int\frac{{dx}}{\mathrm{3}+\mathrm{2}{sinx}+{cosx}}{dx} \\ $$
Question Number 142120 Answers: 2 Comments: 2
Question Number 142116 Answers: 2 Comments: 0
$${use}\:{trigonometric}\:{substitution}\:{to}\:{solve} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 142115 Answers: 2 Comments: 0
$$\mathrm{simplify}\:\:\mathrm{A}_{\mathrm{n}} \left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{ix}\right)^{\mathrm{n}} +\left(\mathrm{1}−\mathrm{ix}\right)^{\mathrm{n}} \:\:\:\mathrm{x}\:\mathrm{from}\:\mathrm{C} \\ $$
Question Number 142105 Answers: 2 Comments: 0
$$\mathrm{Sum}\:\mathrm{the}\:\mathrm{series}\:\mathrm{to}\:\mathrm{n}\:\mathrm{terms} \\ $$$$\mathrm{sin}\:\theta−\mathrm{sin}\:\mathrm{2}\theta+\mathrm{sin}\:\mathrm{3}\theta−........ \\ $$
Question Number 142269 Answers: 0 Comments: 0
Question Number 142268 Answers: 0 Comments: 0
$$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$
Question Number 142100 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\int^{\:} \:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{1}+{t}}\:}\:{dt}=? \\ $$
Question Number 142096 Answers: 0 Comments: 1
Question Number 142092 Answers: 0 Comments: 1
Pg 763 Pg 764 Pg 765 Pg 766 Pg 767 Pg 768 Pg 769 Pg 770 Pg 771 Pg 772
Terms of Service
Privacy Policy
Contact: info@tinkutara.com