Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 758

Question Number 140959    Answers: 1   Comments: 0

Let a,b ≥ 0. Prove that (1/4)∙(((2+a)(2+b))/((1+a)(1+b))) ≥ ((4−a−b)/(4+a+b))

$$\mathrm{Let}\:{a},{b}\:\geqslant\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{\left(\mathrm{2}+{a}\right)\left(\mathrm{2}+{b}\right)}{\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right)}\:\geqslant\:\frac{\mathrm{4}−{a}−{b}}{\mathrm{4}+{a}+{b}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 140958    Answers: 0   Comments: 0

find e^ (((−1 1)),((2 −1)) )

$$\mathrm{find}\:\mathrm{e}^{\begin{pmatrix}{−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}} \\ $$

Question Number 140956    Answers: 1   Comments: 0

.....advanced......calculus..... prove that: 𝛗:= ∫_(−∞) ^( ∞) ((sin^4 (x).cos^4 (x))/x^2 )dx=(π/(16)) m.n

$$\:\:\:\:\:\:\:\:\:\:.....{advanced}......{calculus}..... \\ $$$$\:\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\boldsymbol{\phi}:=\:\int_{−\infty} ^{\:\infty} \frac{{sin}^{\mathrm{4}} \left({x}\right).{cos}^{\mathrm{4}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{16}} \\ $$$$\:\:{m}.{n} \\ $$

Question Number 140966    Answers: 1   Comments: 0

.......nice......calculus..... if Σ_(n=0) ^∞ (((√(cos (nπ))) )/((2n)!!)) = ω then Re(ω):=??

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......{nice}......{calculus}..... \\ $$$$\:\:\:\:\:{if}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\sqrt{{cos}\:\left({n}\pi\right)}\:}{\left(\mathrm{2}{n}\right)!!}\:=\:\omega \\ $$$$\:\:\:\:\:\:\:{then}\:\:\:{Re}\left(\omega\right):=?? \\ $$

Question Number 140941    Answers: 1   Comments: 2

Question Number 140939    Answers: 1   Comments: 0

x^(sgn (x^3 −x)) = x^2 − (4/9)

$$\:{x}^{\mathrm{sgn}\:\left({x}^{\mathrm{3}} −{x}\right)} \:=\:{x}^{\mathrm{2}} \:−\:\frac{\mathrm{4}}{\mathrm{9}}\: \\ $$

Question Number 140938    Answers: 0   Comments: 0

Question Number 140937    Answers: 0   Comments: 0

can someone please share maple with me or show me the site to download free?

$${can}\:{someone}\:{please}\:{share}\:{maple}\:{with}\:{me}\:{or}\:{show}\:{me}\:{the}\:{site}\:{to}\:{download}\:{free}? \\ $$

Question Number 140930    Answers: 3   Comments: 0

∫_0 ^π (dx/( (√2) −cos x))

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}\:−\mathrm{cos}\:\mathrm{x}} \\ $$

Question Number 141002    Answers: 1   Comments: 0

If a>0 and one root of ax^2 +bx+c=0 is less than −2 and the other is greater than 2, then (A) 4a+2∣b∣+c<0 (B) 4a+2∣b∣+c>0 (C) 4a+2∣b∣+c=0 (D) a+b=c

$$\mathrm{If}\:{a}>\mathrm{0}\:\mathrm{and}\:\mathrm{one}\:\mathrm{root}\:\mathrm{of}\:{a}\mathrm{x}^{\mathrm{2}} +{b}\mathrm{x}+\mathrm{c}=\mathrm{0}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:−\mathrm{2} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{2},\:\mathrm{then} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{4}{a}+\mathrm{2}\mid{b}\mid+{c}<\mathrm{0} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{4}{a}+\mathrm{2}\mid{b}\mid+{c}>\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{4}{a}+\mathrm{2}\mid{b}\mid+{c}=\mathrm{0} \\ $$$$\left(\mathrm{D}\right)\:{a}+{b}={c} \\ $$

Question Number 140915    Answers: 1   Comments: 2

Question Number 142212    Answers: 0   Comments: 0

Question Number 140916    Answers: 0   Comments: 4

Question Number 140908    Answers: 0   Comments: 0

ab=c let (a−p)(b−q)=0 ⇒ c−(aq+bp)+pq=0 q=((bp−c)/(p−a)) say 4×2=8 (4−3)(2−((6−8)/(−1)))=1×0=0 And if q=b p=((ab−c)/(2b))=0 And if p+q=c (p−a)(c−p)=bp−c p^2 −(a+c−b)p+c(1−a)=0 2p=(a+c−b)±(√((a+c−b)^2 −4c(1−a))) ________________________

$$\:\:{ab}={c} \\ $$$${let}\:\:\:\left({a}−{p}\right)\left({b}−{q}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{c}−\left({aq}+{bp}\right)+{pq}=\mathrm{0} \\ $$$${q}=\frac{{bp}−{c}}{{p}−{a}} \\ $$$${say}\:\:\:\mathrm{4}×\mathrm{2}=\mathrm{8} \\ $$$$\:\:\:\:\:\left(\mathrm{4}−\mathrm{3}\right)\left(\mathrm{2}−\frac{\mathrm{6}−\mathrm{8}}{−\mathrm{1}}\right)=\mathrm{1}×\mathrm{0}=\mathrm{0} \\ $$$${And}\:\:{if}\:\:{q}={b} \\ $$$$\:\:{p}=\frac{{ab}−{c}}{\mathrm{2}{b}}=\mathrm{0} \\ $$$${And}\:{if}\:{p}+{q}={c} \\ $$$$\left({p}−{a}\right)\left({c}−{p}\right)={bp}−{c} \\ $$$${p}^{\mathrm{2}} −\left({a}+{c}−{b}\right){p}+{c}\left(\mathrm{1}−{a}\right)=\mathrm{0} \\ $$$$\mathrm{2}{p}=\left({a}+{c}−{b}\right)\pm\sqrt{\left({a}+{c}−{b}\right)^{\mathrm{2}} −\mathrm{4}{c}\left(\mathrm{1}−{a}\right)} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Question Number 140907    Answers: 1   Comments: 0

(√(sin x)) cos x −(√(sin^5 x)) cos x = cos^3 x (√(sin x))

$$\:\sqrt{\mathrm{sin}\:\mathrm{x}}\:\mathrm{cos}\:\mathrm{x}\:−\sqrt{\mathrm{sin}\:^{\mathrm{5}} \mathrm{x}}\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:\sqrt{\mathrm{sin}\:\mathrm{x}} \\ $$

Question Number 140905    Answers: 2   Comments: 0

lim_(x→0) ((1−cos (1−cos x))/(x (tan x−x))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}\:\left(\mathrm{tan}\:\mathrm{x}−\mathrm{x}\right)}\:=? \\ $$

Question Number 140900    Answers: 1   Comments: 1

{ ((x^3 =xyz+1)),((y^3 =xyz+2)),((z^3 =xyz−3)) :}

$$\:\begin{cases}{\mathrm{x}^{\mathrm{3}} =\mathrm{xyz}+\mathrm{1}}\\{\mathrm{y}^{\mathrm{3}} =\mathrm{xyz}+\mathrm{2}}\\{\mathrm{z}^{\mathrm{3}} =\mathrm{xyz}−\mathrm{3}}\end{cases} \\ $$

Question Number 140899    Answers: 0   Comments: 2

Question Number 140896    Answers: 2   Comments: 0

the function f with variable x satisfies the equation x^2 f ′(x) +2x f(x) = arctan x for 0 < arctan x <(π/2) and f(1)=(π/4). find f(x).

$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\:\mathrm{with}\:\mathrm{variable}\:\mathrm{x} \\ $$$$\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{x}^{\mathrm{2}} \:\mathrm{f}\:'\left(\mathrm{x}\right)\:+\mathrm{2x}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{arctan}\:\mathrm{x}\:\mathrm{for}\: \\ $$$$\mathrm{0}\:<\:\mathrm{arctan}\:\mathrm{x}\:<\frac{\pi}{\mathrm{2}}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}. \\ $$$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right). \\ $$

Question Number 140890    Answers: 1   Comments: 0

1+2x+3x^2 +4x^3 +...+(n+1)x^n =?

$$\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +...+\left({n}+\mathrm{1}\right){x}^{\boldsymbol{{n}}} =? \\ $$

Question Number 140874    Answers: 2   Comments: 1

Question Number 140869    Answers: 1   Comments: 0

the velocities of air particles above and below the wing of an aircraft speeding down the runway at a given instant are 210m/s and 200m/s respectively.If the density of air is 1.2kg/m^3 ,what is the pressure difference between the upper and lower surface of the wing?

$${the}\:\mathrm{velocities}\:\mathrm{of}\:\mathrm{air}\:\mathrm{particles}\: \\ $$$$\mathrm{above}\:\mathrm{and}\:\mathrm{below}\:\mathrm{the}\:\mathrm{wing}\:\mathrm{of}\:\mathrm{an}\:\mathrm{aircraft} \\ $$$$\:\mathrm{speeding}\:\mathrm{down}\:\mathrm{the}\:\mathrm{runway}\:\mathrm{at}\:\mathrm{a} \\ $$$$\:\mathrm{given}\:\mathrm{instant} \\ $$$$\mathrm{are}\:\mathrm{210m}/\mathrm{s}\:\mathrm{and}\:\mathrm{200m}/\mathrm{s}\: \\ $$$$\mathrm{respectively}.\mathrm{If}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{air}\:\mathrm{is}\: \\ $$$$\mathrm{1}.\mathrm{2kg}/\mathrm{m}^{\mathrm{3}} ,\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pressure} \\ $$$$\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{and} \\ $$$$\mathrm{lower}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wing}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 140866    Answers: 1   Comments: 0

∫_0 ^1 ((ln 2−ln (1+x^2 ))/(1−x)) dx =?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{2}−\mathrm{ln}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$

Question Number 140870    Answers: 1   Comments: 0

Ocean waves are observed to travel along the water surface during a developing storm. A Coast Guard weather station observes that there is a vertical distance from high point to low point of 4.6 meters and horizontal distance of 8.6 meters between adjacent crests.The waves splash into the station once every 6.2 seconds Determine the frequency and the speeed of these waves.

$${O}\mathrm{cean}\:\mathrm{waves}\:\mathrm{are}\:\mathrm{observed}\:\mathrm{to} \\ $$$$\mathrm{travel}\:\mathrm{along}\:\mathrm{the}\:\mathrm{water}\:\mathrm{surface} \\ $$$$\:\mathrm{during}\:\mathrm{a}\:\mathrm{developing}\:\mathrm{storm}. \\ $$$$\mathrm{A}\:\mathrm{Coast}\:\mathrm{Guard}\:\mathrm{weather}\:\mathrm{station} \\ $$$$\:\mathrm{observes}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vertical}\: \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{high}\:\mathrm{point}\:\mathrm{to}\:\mathrm{low} \\ $$$$\:\mathrm{point}\:\mathrm{of}\:\mathrm{4}.\mathrm{6}\:\mathrm{meters}\:\mathrm{and}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\mathrm{8}.\mathrm{6}\:\mathrm{meters}\:\mathrm{between}\: \\ $$$$\mathrm{adjacent}\:\mathrm{crests}.\mathrm{The}\:\mathrm{waves}\:\mathrm{splash}\: \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{station}\:\mathrm{once}\:\mathrm{every}\:\mathrm{6}.\mathrm{2}\:\mathrm{seconds} \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{frequency}\:\mathrm{and} \\ $$$$\:\mathrm{the}\:\mathrm{speeed}\:\mathrm{of}\:\mathrm{these}\:\mathrm{waves}. \\ $$

Question Number 140863    Answers: 1   Comments: 4

1+(√3^a ) = 2(√2^a )

$$\mathrm{1}+\sqrt{\mathrm{3}^{\boldsymbol{{a}}} }\:=\:\mathrm{2}\sqrt{\mathrm{2}^{\boldsymbol{{a}}} } \\ $$

Question Number 140888    Answers: 1   Comments: 0

  Pg 753      Pg 754      Pg 755      Pg 756      Pg 757      Pg 758      Pg 759      Pg 760      Pg 761      Pg 762   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com