Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 756

Question Number 138276    Answers: 0   Comments: 0

1) calculate A_n =∫∫_([0,n[^2 ) ((dxdy)/((2x^2 +3y^2 )^2 )) 2)find lim_(n→+∞) A_n

$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int\int_{\left[\mathrm{0},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\frac{\mathrm{dxdy}}{\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{3y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{A}_{\mathrm{n}} \\ $$

Question Number 138240    Answers: 3   Comments: 0

(x−1)(dy/dx) +xy = 2xe^(−x)

$$\:\left({x}−\mathrm{1}\right)\frac{{dy}}{{dx}}\:+{xy}\:=\:\mathrm{2}{xe}^{−{x}} \\ $$

Question Number 138257    Answers: 1   Comments: 0

hi ! calculate : ∫∫_A (x^2 −y^2 )dxdy with A={(x^2 /a^2 ) + (y^2 /b^2 ) ≤ 1}

$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{calculate}}\::\: \\ $$$$\int\int_{\mathrm{A}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:{with}\:\mathrm{A}=\left\{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\leqslant\:\mathrm{1}\right\} \\ $$

Question Number 138254    Answers: 0   Comments: 10

Question Number 138250    Answers: 1   Comments: 0

(x^2 −10x+6)^(x−2) >1

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{10x}+\mathrm{6}\right)^{\mathrm{x}−\mathrm{2}} >\mathrm{1} \\ $$

Question Number 138249    Answers: 1   Comments: 0

lim_(n→0) ((2^(n+1) +3^(n+2) +4^(n+3) )/(2^n +3^n +4^n ))

$$\mathrm{li}\underset{\mathrm{n}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} +\mathrm{3}^{\mathrm{n}+\mathrm{2}} +\mathrm{4}^{\mathrm{n}+\mathrm{3}} }{\mathrm{2}^{\mathrm{n}} +\mathrm{3}^{\mathrm{n}} +\mathrm{4}^{\mathrm{n}} } \\ $$

Question Number 138248    Answers: 0   Comments: 3

x^(x+4) =32

$$\mathrm{x}^{\mathrm{x}+\mathrm{4}} =\mathrm{32} \\ $$

Question Number 138236    Answers: 0   Comments: 5

prove that (e^(−2y) /(1+e^(−2y) ))<∣tan(z) − i∣<(e^(−2y) /(1−e^(−2y) )) ,y>0 how can solve this ?

$${prove}\:{that}\: \\ $$$$ \\ $$$$\frac{{e}^{−\mathrm{2}{y}} }{\mathrm{1}+{e}^{−\mathrm{2}{y}} }<\mid{tan}\left({z}\right)\:−\:{i}\mid<\frac{{e}^{−\mathrm{2}{y}} }{\mathrm{1}−{e}^{−\mathrm{2}{y}} }\:\:\:,{y}>\mathrm{0} \\ $$$$ \\ $$$${how}\:{can}\:{solve}\:{this}\:? \\ $$

Question Number 138235    Answers: 1   Comments: 0

for p,q∈R satisfying p^4 +q^4 =4pq find the range of p+q when 1) no restriction 2) 0≤p≤1, 0≤q≤1

$${for}\:{p},{q}\in\mathbb{R}\:{satisfying}\:{p}^{\mathrm{4}} +{q}^{\mathrm{4}} =\mathrm{4}{pq} \\ $$$${find}\:{the}\:{range}\:{of}\:{p}+{q}\:{when} \\ $$$$\left.\mathrm{1}\right)\:{no}\:{restriction} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{0}\leqslant{p}\leqslant\mathrm{1},\:\mathrm{0}\leqslant{q}\leqslant\mathrm{1} \\ $$

Question Number 138231    Answers: 0   Comments: 0

Question Number 138224    Answers: 1   Comments: 1

Question Number 138223    Answers: 2   Comments: 0

.......nice ... ... ... calculus... evaluate ::: 𝚯=Σ_(n=−∞) ^∞ (1/((3n+1)^3 )) =? .........................

$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:.......{nice}\:...\:...\:...\:{calculus}... \\ $$$$\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\Theta}=\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......................... \\ $$

Question Number 138219    Answers: 2   Comments: 0

Consider the function y=((x^2 +3x+6)/(3x−1)) 1) Determine the intercept of the function 2) Find the asymptotes if they exist 3) find the turning point and determine the type of turnin point they are. 4) sketch the graph of the function.

$$\:\mathrm{Consider}\:\mathrm{the}\:\mathrm{function}\:\mathrm{y}=\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{6}}{\mathrm{3x}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{intercept}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{if}\:\mathrm{they}\:\mathrm{exist} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{turning}\:\mathrm{point}\:\mathrm{and}\: \\ $$$$\mathrm{determine}\:\mathrm{the}\:\mathrm{type}\:\mathrm{of}\:\mathrm{turnin}\:\mathrm{point}\:\mathrm{they} \\ $$$$\mathrm{are}. \\ $$$$\left.\mathrm{4}\right)\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}. \\ $$

Question Number 138209    Answers: 2   Comments: 1

I_n =∫_0 ^( 1) x^n (√(x^2 +1))dx find reduction formula

$${I}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{{n}} \sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$${find}\:{reduction}\:{formula} \\ $$

Question Number 138206    Answers: 1   Comments: 1

Question Number 138205    Answers: 2   Comments: 3

Question Number 138203    Answers: 1   Comments: 0

Three circles each radius 1, touch one another externally and they lie between two parallel line. The minimum possible distance between the lines is _

$${Three}\:{circles}\:{each}\:{radius}\:\mathrm{1},\:{touch}\:{one} \\ $$$${another}\:{externally}\:{and}\:{they}\:{lie} \\ $$$${between}\:{two}\:{parallel}\:{line}.\:{The}\: \\ $$$${minimum}\:{possible}\:{distance}\:{between}\: \\ $$$${the}\:{lines}\:{is}\:\_\: \\ $$

Question Number 142191    Answers: 1   Comments: 3

Question Number 142185    Answers: 2   Comments: 0

∫(1/(x^4 +1))dx

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx} \\ $$

Question Number 138193    Answers: 1   Comments: 0

Given x≠y and x^2 =25x+y, y^2 =x+25y solve for the value of (√(x^2 +y^2 +1)) without using calculators or tools. Show your method.

$${Given}\:{x}\neq{y}\:{and}\:{x}^{\mathrm{2}} =\mathrm{25}{x}+{y},\:{y}^{\mathrm{2}} ={x}+\mathrm{25}{y}\: \\ $$$${solve}\:{for}\:{the}\:{value}\:{of}\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}}\:{without}\: \\ $$$${using}\:{calculators}\:{or}\:{tools}. \\ $$$${Show}\:{your}\:{method}. \\ $$

Question Number 138217    Answers: 0   Comments: 2

A rectangular water tank is being filed at the constant rate of 70lt/s. The base of the tank has width w=9m and length length l=16m if the volume of the tank is v=w×l×h where h is the hight of the tank. what is the rate of change of the hight of water in the tank

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{water}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{being}\:\mathrm{filed} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{70lt}/\mathrm{s}.\:\mathrm{The}\: \\ $$$$\mathrm{base}\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{has}\:\mathrm{width}\:\mathrm{w}=\mathrm{9m} \\ $$$$\mathrm{and}\:\mathrm{length}\:\mathrm{length}\:\mathrm{l}=\mathrm{16m}\:\mathrm{if}\:\mathrm{the}\:\mathrm{volume} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{v}=\mathrm{w}×\mathrm{l}×\mathrm{h}\:\mathrm{where}\:\mathrm{h}\:\mathrm{is}\: \\ $$$$\mathrm{the}\:\mathrm{hight}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tank}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{rate} \\ $$$$\mathrm{of}\:\mathrm{change}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hight}\:\mathrm{of}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{tank} \\ $$

Question Number 138175    Answers: 1   Comments: 1

Question Number 138171    Answers: 0   Comments: 0

.......mathematical....analysis....... if : 𝛗=∫_0 ^( 1) ((arctan(x).ln(1+x^2 ))/x^2 )dx =(1/(48))(aπ^2 −bπln(2)+c ln^2 (2)) ......then .... a^2 +(b−c+1)^2 =???

$$\:\:\:\:\:\:\:\:\:\:\:.......{mathematical}....{analysis}....... \\ $$$$\:\:\:\:\:{if}\::\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{arctan}\left({x}\right).{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{48}}\left({a}\pi^{\mathrm{2}} −{b}\pi{ln}\left(\mathrm{2}\right)+{c}\:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:......{then}\:\:....\:{a}^{\mathrm{2}} +\left({b}−{c}+\mathrm{1}\right)^{\mathrm{2}} =??? \\ $$

Question Number 138167    Answers: 2   Comments: 0

let f(x) = determinant ((x,x^2 ,x^3 ),(0,(2x ),(3x^2 )),(1,0,x)) find f ′(x)

$$\mathrm{let}\:{f}\left({x}\right)\:=\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{2}} }&{{x}^{\mathrm{3}} }\\{\mathrm{0}}&{\mathrm{2}{x}\:}&{\mathrm{3}{x}^{\mathrm{2}} }\\{\mathrm{1}}&{\mathrm{0}}&{{x}}\end{vmatrix}\:\mathrm{find} \\ $$$$\:{f}\:'\left({x}\right)\: \\ $$

Question Number 138163    Answers: 1   Comments: 0

........nice ... .... .... calculus..... prove that:: Ψ=Σ_(n=1) ^∞ ((1/(n^2 π^2 +1)))=^(???) (1/(e^2 −1)) .............

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:........{nice}\:\:...\:....\:....\:{calculus}..... \\ $$$$\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} +\mathrm{1}}\right)\overset{???} {=}\frac{\mathrm{1}}{{e}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:............. \\ $$

Question Number 138159    Answers: 1   Comments: 0

  Pg 751      Pg 752      Pg 753      Pg 754      Pg 755      Pg 756      Pg 757      Pg 758      Pg 759      Pg 760   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com