| x^4 +bx^2 +cx=s
let x^2 =px+t
β p^2 x^2 +2ptx+t^2 +bx^2 +cx=s
β (p^2 +b)x^2 +(2pt+c)x
=sβt^2
β (p^2 +b)(px+t)+(2pt+c)x
=sβt^2
β p(p^2 +b)+2pt+c=0
and (p^2 +b)t=sβt^2
((s/t)βtβb)((s/t)+t)^2 =c^2
β (Aβb)(A^2 +4s)=c^2
β A^3 βbA^2 +4sAβ4bsβc^2 =0
let A=z+(b/3) β
z^3 +(4sβ(b^2 /3))zβ(((2b^3 )/(27))+((8bs)/3)+c^2 )=0
D=((b^3 /(27))+((4bs)/3)+(c^2 /2))^2 β((b^2 /9)β((4s)/3))^3
If s=0, b=β1, cββc
then D=(β(1/(27))+(c^2 /2))^2 β((1/9))^3
...
|