Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 755
Question Number 143588 Answers: 3 Comments: 0
Question Number 143582 Answers: 0 Comments: 0
$${x}^{\mathrm{3}} −{x}−{c}=\mathrm{0} \\ $$$${let}\:\:{x}={t}+{h} \\ $$$$\left({t}−{s}\right)\left\{{t}^{\mathrm{3}} +\mathrm{3}{ht}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){t}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({h}^{\mathrm{3}} −{h}−{c}\right)\right\}=\mathrm{0} \\ $$$${let}\:{t}={p}+{q} \\ $$$$\left({p}+{q}−{s}\right)\left\{{p}^{\mathrm{3}} +{q}^{\mathrm{3}} +\mathrm{3}{pq}\left({p}+{q}\right)\right. \\ $$$$\:\:+\mathrm{3}{h}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+\mathrm{6}{hpq} \\ $$$$\left.\:\:+\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)\left({p}+{q}\right)+\left({h}^{\mathrm{3}} −{h}−{c}\right)\right\} \\ $$$$\:\:=\:\mathrm{0} \\ $$$${p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{pq}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+\mathrm{3}{pq}\left({p}+{q}\right)^{\mathrm{2}} \\ $$$$+\mathrm{3}{h}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}+{q}\right)+\mathrm{6}{hpq}\left({p}+{q}\right) \\ $$$$+\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)\left({p}+{q}\right)^{\mathrm{2}} \\ $$$$+\left({h}^{\mathrm{3}} −{h}−{c}\right)\left({p}+{q}\right) \\ $$$$−{s}\left({p}^{\mathrm{3}} +{q}^{\mathrm{3}} \right)−\mathrm{3}{pqs}\left({p}+{q}\right) \\ $$$$−\mathrm{3}{hs}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)−\mathrm{6}{hspq} \\ $$$$+\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){s}\left({p}+{q}\right) \\ $$$$−{s}\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$$${let}\:\:{p}^{\mathrm{4}} +{q}^{\mathrm{4}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$$\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)−\mathrm{2}{p}^{\mathrm{2}} {q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}{p}^{\mathrm{2}} {q}^{\mathrm{2}} } \\ $$$${say}\:\:\:\:{z}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}{m}^{\mathrm{2}} } \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} ={z}+\mathrm{2}{m} \\ $$$$\Rightarrow{z}\left(\mathrm{1}+{m}+\mathrm{3}{m}+\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}−\mathrm{3}{hs}\right) \\ $$$$+\left({z}+\mathrm{2}{m}\right)^{\mathrm{1}/\mathrm{2}} \left\{\mathrm{3}{hz}+\mathrm{6}{mh}\right. \\ $$$$\:\:\:\:+{h}^{\mathrm{3}} −{h}−{c}−\mathrm{3}{ms} \\ $$$$\left.\:\:\:\:−{s}\left({z}−{m}\right)+\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){s}\right\} \\ $$$$+\mathrm{6}{m}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){m}−\mathrm{6}{hsm} \\ $$$$−{s}\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$$${let}\:\:\:\left(\mathrm{3}{h}−{s}\right){z}+{m}\left(\mathrm{6}{h}−\mathrm{2}{s}\right) \\ $$$$\:\:\:\:\:\:\:+{h}^{\mathrm{3}} −{h}−{c}+\mathrm{3}{sh}^{\mathrm{2}} −{s}=\mathrm{0} \\ $$$$\&\:\:\mathrm{4}{m}+\mathrm{3}{h}\left({h}−{s}\right)=\mathrm{0}\:\:\Rightarrow \\ $$$$\:\mathrm{2}\left(\mathrm{3}{h}−{s}\right){z}−\mathrm{3}{h}\left({h}−{s}\right)\left(\mathrm{3}{h}−{s}\right) \\ $$$$\:\:+\mathrm{3}{sh}^{\mathrm{2}} −{s}+{h}^{\mathrm{3}} −{h}−{c}=\mathrm{0} \\ $$$${let}\:\:{s}=−\mathrm{3}{h} \\ $$$$\Rightarrow\:\mathrm{12}{hz}−\mathrm{80}{h}^{\mathrm{3}} −{h}−{c}=\mathrm{0} \\ $$$$\&\:\:{m}=−\mathrm{3}{h}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{54}{h}^{\mathrm{4}} −\mathrm{6}{h}^{\mathrm{2}} \left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\:\:\:\:\:−\mathrm{54}{h}^{\mathrm{4}} +\mathrm{3}{h}\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{15}{h}^{\mathrm{4}} −\mathrm{3}{h}^{\mathrm{2}} +\mathrm{3}{ch}=\mathrm{0} \\ $$$${And}\:{if}\:{h}\neq\mathrm{0}\:\:\Rightarrow \\ $$$$\:\:\mathrm{5}{h}^{\mathrm{3}} −{h}+{c}=\mathrm{0} \\ $$$${D}=\frac{{c}^{\mathrm{2}} }{\mathrm{100}}−\left(\frac{\mathrm{1}}{\mathrm{15}}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:\:{D}\geqslant\mathrm{0}\:\:{if}\:{c}\geqslant\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{15}}} \\ $$$${m}=−\mathrm{3}{h}^{\mathrm{2}} \:;\:{s}=−\mathrm{3}{h};\:\:{And} \\ $$$$\:\mathrm{12}{hz}−\mathrm{80}{h}^{\mathrm{3}} −{h}−{c}=\mathrm{0} \\ $$$$\Rightarrow\:\:{z}=\frac{\mathrm{20}{h}^{\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{{c}}{\mathrm{12}{h}} \\ $$$${p}+{q}=\sqrt{{z}+\mathrm{2}{m}} \\ $$$$\:\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{2}{h}^{\mathrm{2}} }{\mathrm{3}}+\frac{{c}+{h}}{\mathrm{12}{h}}} \\ $$$${x}={t}+{h}={p}+{q}+{h} \\ $$$$\:\:\:{x}={h}+\sqrt{\frac{\mathrm{2}{h}^{\mathrm{2}} }{\mathrm{3}}+\frac{{c}+{h}}{\mathrm{12}{h}}} \\ $$$${but}\:\:\:\frac{{c}}{\mathrm{12}{h}}>−\left(\frac{\mathrm{2}{h}^{\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{12}}\right) \\ $$$$\Rightarrow\:\:{c}<−\mathrm{8}{h}^{\mathrm{3}} −{h} \\ $$$$\Rightarrow\:\:\mathrm{8}{h}^{\mathrm{3}} +{h}+{c}<\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{5}{h}^{\mathrm{3}} −{h}+{c}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{13}{h}^{\mathrm{3}} +\mathrm{2}{c}<\mathrm{0} \\ $$$$...... \\ $$
Question Number 143578 Answers: 0 Comments: 2
Question Number 143576 Answers: 0 Comments: 0
$${find}\:{L}\left(\frac{{arctanx}}{{x}}\right) \\ $$
Question Number 143575 Answers: 1 Comments: 0
$${find}\:{L}\left({e}^{−\sqrt{{x}}} \right) \\ $$
Question Number 143570 Answers: 1 Comments: 0
Question Number 143715 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tanx}\centerdot\mathrm{Li}\left(\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 143562 Answers: 0 Comments: 0
Question Number 143561 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}−\frac{\mathrm{2}}{{x}^{} }+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{{x}} =? \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{n}}−\sqrt{{n}−\mathrm{1}}\right)\sqrt{{n}+\mathrm{1}}\:=? \\ $$
Question Number 143556 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{\alpha} \left(\mathrm{lnx}\right)^{\beta} } \\ $$
Question Number 143546 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{8}+\mathrm{x}^{\mathrm{4}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 143542 Answers: 0 Comments: 0
$${calculate}\:{the}\:{polar}\:{integral}\:{that} \\ $$$$\:{give}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bunded}\:{by}\:{the}\:{curves}\: \\ $$$$ \\ $$$${r}=\mathrm{2}\:,{r}=\mathrm{4}{cos}\theta\:{and}\:,{r}\:{cos}\theta=\mathrm{3}\: \\ $$$$ \\ $$
Question Number 143531 Answers: 1 Comments: 0
$$\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{2}\sqrt{{x}}+\mathrm{3}\:\sqrt[{\mathrm{3}}]{{x}}\:+\mathrm{5}\:\sqrt[{\mathrm{5}}]{{x}}}{\:\sqrt{\mathrm{3}{x}−\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{2}{x}−\mathrm{3}}}\:=? \\ $$
Question Number 143532 Answers: 1 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\mathrm{cos}\:{x}}{\mathrm{tan}\:^{\mathrm{4}} {x}}\:=? \\ $$
Question Number 143523 Answers: 1 Comments: 0
$${Determiner}\:{l}'{origine}\:{de}\:{laplace} \\ $$$$\mathrm{1}−{F}\left({p}\right)=\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Question Number 143521 Answers: 0 Comments: 1
Question Number 143519 Answers: 3 Comments: 0
$$ \\ $$$${The}\:{first}\:{two}\:{terms}\:{of}\:{the}\:\left\{{a}_{{n}} \right\}\:{series}\:\:\:{are}\:{defind}\:{as}\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \:\:{for}\:{the}\:{general}\:{term} \\ $$$$\:{a}_{\mathrm{1}} =\mathrm{5},\:{a}_{\mathrm{2}} =\mathrm{8}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$$${since}\:{the}\:{L}={li}\underset{{n}\rightarrow\infty} {{m}}\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:\:{what}\:{is}\:{the}\:{value}\:{of}\:{L} \\ $$$$ \\ $$
Question Number 143516 Answers: 2 Comments: 1
Question Number 143508 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:..........{Calculus}........ \\ $$$$\:\:\:\:{i}:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} :=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right).{ln}\left({x}\right)}{{x}}{dx} \\ $$$$\:\:\:{ii}:\:\:\:\boldsymbol{\phi}_{\mathrm{2}} :=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{{x}}\:{dx} \\ $$$$\:\:{iii}\::\:\boldsymbol{\phi}_{\mathrm{3}} \::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right).{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$
Question Number 143507 Answers: 1 Comments: 0
$$\mathrm{10}\sqrt{\mathrm{20}}+\mathrm{13}\sqrt{\mathrm{45}} \\ $$
Question Number 143506 Answers: 1 Comments: 0
$$\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{{e}^{−{x}} +{e}^{{x}} }\:{dx}=? \\ $$$$ \\ $$
Question Number 143505 Answers: 1 Comments: 1
Question Number 143501 Answers: 0 Comments: 0
Question Number 143502 Answers: 0 Comments: 0
Question Number 143499 Answers: 1 Comments: 1
Question Number 143514 Answers: 0 Comments: 1
Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756 Pg 757 Pg 758 Pg 759
Terms of Service
Privacy Policy
Contact: info@tinkutara.com