Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 754
Question Number 142414 Answers: 1 Comments: 2
$$\mathrm{4}{sin}^{\mathrm{2}} \mathrm{18}°\:+\:\mathrm{2}{sin}\mathrm{18}°\:+\:\mathrm{2},\mathrm{5}\:=\:? \\ $$
Question Number 142408 Answers: 1 Comments: 1
Question Number 142404 Answers: 2 Comments: 1
Question Number 142401 Answers: 1 Comments: 1
Question Number 142395 Answers: 0 Comments: 0
Question Number 142397 Answers: 0 Comments: 0
Question Number 142393 Answers: 1 Comments: 0
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{sec}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)=\mathrm{n}^{\mathrm{2}} ......??? \\ $$
Question Number 142389 Answers: 1 Comments: 0
$$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$
Question Number 142388 Answers: 1 Comments: 0
$$\mathrm{n}\:\in\:\mathbb{N},\:\mathrm{b},\:\mathrm{a}\:\in\:\mathbb{N}\:;\:\mathrm{a}\neq\mathrm{0}. \\ $$$$\mathrm{In}\:\mathrm{base}\:\mathrm{10};\:\mathrm{n}=\overline {\mathrm{aabb}}\: \\ $$$$\mathrm{1}.\:\mathrm{show}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{not}\:\mathrm{prime}. \\ $$$$\mathrm{2}.\:\mathrm{Give}\:\mathrm{conditions}\:\mathrm{on}\:\mathrm{b}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{n}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{3}.\:\mathrm{Determinate}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{perfect}\:\mathrm{square}. \\ $$
Question Number 142383 Answers: 1 Comments: 1
Question Number 142379 Answers: 0 Comments: 1
$${Show}\:{that}\:\mathrm{1}+\mathrm{3}{n}<{n}^{\mathrm{2}} \:{for}\:{every}\:{positive}\:{integer}\:{n}\geqslant\mathrm{4} \\ $$
Question Number 142365 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int\:\:\sqrt{\mathrm{1}+\mathrm{e}^{\mathrm{x}} \:+\mathrm{e}^{\mathrm{2x}} }\mathrm{dx} \\ $$
Question Number 142362 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {ln}\left(\frac{\mathrm{1}}{{x}}\right).{j}_{\mathrm{0}} \left({x}\right){dx}:=\:\gamma+{ln}\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\:{Hint}:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:{j}_{\mathrm{0}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\mathrm{2}^{\mathrm{2}{n}} .\Gamma^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:\left({Bessel}\:{function}\right) \\ $$$$\:\:\:\:{Hint}:\mathrm{2}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{L}\:\left[\:{j}_{\mathrm{0}} \left({x}\right)\right]=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }} \\ $$
Question Number 142361 Answers: 1 Comments: 0
Question Number 142359 Answers: 0 Comments: 0
Question Number 142358 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}−\mathrm{1}} {log}_{{e}} \left(\mathrm{1}−{x}\right){dx} \\ $$
Question Number 142356 Answers: 0 Comments: 0
Question Number 142351 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{27}+{x}}−\sqrt[{\mathrm{3}\:}]{\mathrm{27}−{x}}}{\:\sqrt[{\mathrm{3}\:}]{{x}^{\mathrm{2}} }\:+\:\sqrt[{\mathrm{4}\:}]{{x}^{\mathrm{3}} }}\:=? \\ $$
Question Number 142347 Answers: 1 Comments: 1
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{logx}}{\mathrm{x}^{\mathrm{6}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 142346 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{log}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$
Question Number 142344 Answers: 0 Comments: 3
$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}:=\underset{\frac{\mathrm{1}}{{e}}} {\int}^{\:{e}} \left\{\frac{\mathrm{1}}{{ln}\left({x}\right)}+{ln}\left({ln}\left({x}\right)\right)\right\}{dx} \\ $$
Question Number 142341 Answers: 1 Comments: 1
Question Number 142338 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\mu} }{dx}\:\:=?\:\:\: \\ $$
Question Number 142325 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{a}\:\geqslant\:\mathrm{1}\:\geqslant\:{b}\:>\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{followings}:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{b}\right)^{\mathrm{2}} \:\leqslant\:\left({a}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{1}−{b}\right)^{\mathrm{2}} \:\leqslant\:\left({a}−{b}\right)^{\mathrm{2}} \:\:\:\: \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\left({a}−{b}\right)^{\mathrm{3}} \:\leqslant\:\left({a}−\mathrm{1}\right)^{\mathrm{3}} +\left(\mathrm{1}−{b}\right)^{\mathrm{3}} \:\leqslant\:\left({a}−{b}\right)^{\mathrm{3}} \\ $$$$ \\ $$
Question Number 142349 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{2}\right)\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}^{{n}} }=? \\ $$
Question Number 142348 Answers: 1 Comments: 0
$$\frac{\sqrt[{\mathrm{6}}]{\mathrm{4}−\sqrt{\mathrm{15}}}}{\:\sqrt{\mathrm{4}−\sqrt{\mathrm{15}}}\:\centerdot\:\sqrt[{\mathrm{3}}]{\mathrm{4}+\sqrt{\mathrm{15}}}}\:=\:? \\ $$
Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756 Pg 757 Pg 758
Terms of Service
Privacy Policy
Contact: info@tinkutara.com