Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 753
Question Number 142502 Answers: 0 Comments: 0
$$\frac{{dy}}{{dx}}\: \\ $$$${y}=\:\mathrm{3}{a}^{{x}} −\mathrm{cot}\:\mathrm{2}{x} \\ $$
Question Number 142499 Answers: 2 Comments: 1
Question Number 142492 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{2}}\:\mathrm{diverges}. \\ $$
Question Number 142489 Answers: 0 Comments: 3
$$\mathrm{In}\:\:\mathrm{a}\:\mathrm{certain}\:\mathrm{urn}\:\mathrm{there}\:\mathrm{are}\:\mathrm{3}\:\mathrm{blue}, \\ $$$$\mathrm{2red}\:\mathrm{and}\:\mathrm{5}\:\mathrm{yellow}\:\mathrm{marbles}. \\ $$$$\mathrm{Calculate}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{atmost} \\ $$$$\mathrm{2}\:\mathrm{marbles}\:\mathrm{will}\:\mathrm{be}\:\mathrm{red}\:\mathrm{if}\:\mathrm{3}\:\mathrm{marbles} \\ $$$$\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{without}\:\mathrm{replacement} \\ $$
Question Number 142488 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{k}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 142477 Answers: 0 Comments: 0
Question Number 142475 Answers: 2 Comments: 0
Question Number 142469 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:......\:\:{Calculus}\:..... \\ $$$$\:\:\:\:{Evaluate}:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{log}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−{x}}\right)^{\mathrm{3}} {dx}=?? \\ $$
Question Number 142467 Answers: 0 Comments: 2
Question Number 142459 Answers: 2 Comments: 0
$$\:\:\:\:\:\:−−−−−−−−−−− \\ $$$$\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\left(\frac{{x}}{\mathrm{cot}\:{x}}−\frac{\pi}{\mathrm{2cos}\:{x}}\right)=? \\ $$$$\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$
Question Number 142457 Answers: 1 Comments: 0
$$\:{I}=\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{{x}}\right)}} \\ $$
Question Number 142464 Answers: 2 Comments: 0
$$\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left[\frac{\left(\mathrm{2}\boldsymbol{{n}}\right)!}{\boldsymbol{{n}}!\boldsymbol{{n}}^{\boldsymbol{{n}}} }\right]^{\frac{\mathrm{1}}{\boldsymbol{{n}}}} =? \\ $$
Question Number 142462 Answers: 2 Comments: 0
Question Number 142461 Answers: 2 Comments: 1
Question Number 142447 Answers: 2 Comments: 1
Question Number 142438 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{{lnx}}{dx} \\ $$$${how}\:\:{many}\:{tricks}\:{solve}\:{this} \\ $$
Question Number 142437 Answers: 1 Comments: 0
Question Number 142435 Answers: 0 Comments: 1
Question Number 142430 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 142429 Answers: 1 Comments: 0
$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{{n}} {x}}{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{U}_{{n}} \\ $$
Question Number 142426 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{xlogx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 142425 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{3}} {x}}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 142424 Answers: 0 Comments: 0
$$\left.\mathrm{2}\right){calculate}\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{{n}}\right)\:\:\:\left({n}>\mathrm{2}\right) \\ $$$$\left.\mathrm{1}\right)\:{use}\:{Rieman}\:{sum}\:{to}\:{prove} \\ $$$${that}\:\int_{\mathrm{0}} ^{\pi} {log}\left({sinx}\right){dx}=−\pi{log}\mathrm{2} \\ $$
Question Number 142423 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 142420 Answers: 0 Comments: 0
Question Number 142415 Answers: 1 Comments: 0
$$\frac{{x}}{{x}+\mathrm{4}}=\frac{\mathrm{5}\lfloor{x}\rfloor−\mathrm{7}}{\mathrm{7}\lfloor{x}\rfloor−\mathrm{5}} \\ $$$${x}=? \\ $$
Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756 Pg 757
Terms of Service
Privacy Policy
Contact: info@tinkutara.com