Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 753
Question Number 137518 Answers: 1 Comments: 0
$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{u}^{\mathrm{2}} +\mathrm{2}}{\mathrm{u}^{\mathrm{4}} +\mathrm{2u}^{\mathrm{2}} +\mathrm{2}}\mathrm{du} \\ $$
Question Number 137509 Answers: 2 Comments: 1
$$\int\:\frac{\mathrm{sin}\:\left(\sqrt{{x}}\:\right)+\mathrm{cos}\:\left(\sqrt{{x}}\:\right)}{\:\sqrt{{x}}\:\mathrm{sin}\:\left(\mathrm{2}\sqrt{{x}}\:\right)}\:{dx}\: \\ $$
Question Number 137508 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{3}} }\:{dx}\:=? \\ $$
Question Number 137501 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:....{advanced}\:....\:{calculus}.... \\ $$$$\:\:{prove}\:{that}:: \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}=\frac{\mathrm{13}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{ln}\left(\mathrm{2}\right).... \\ $$
Question Number 137482 Answers: 2 Comments: 0
Question Number 137477 Answers: 1 Comments: 1
Question Number 137476 Answers: 1 Comments: 2
Question Number 137474 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{nice}\:\:........\:\:{calculus}..... \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\sqrt[{\mathrm{3}}]{{ln}\left(\sqrt{\mathrm{1}−{x}}\right)}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Im}\left(\boldsymbol{\phi}\right)=??? \\ $$
Question Number 137473 Answers: 2 Comments: 0
$${what}\:{is}\:{larger}?\:\mathrm{99}^{\mathrm{100}} \:{or}\:\mathrm{100}^{\mathrm{99}} ? \\ $$
Question Number 137472 Answers: 1 Comments: 0
$${solve} \\ $$$${x}^{\mathrm{3}} −\mathrm{2}\left[{x}\right]=\mathrm{5} \\ $$
Question Number 137470 Answers: 0 Comments: 0
Question Number 137469 Answers: 0 Comments: 0
Question Number 137468 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\left(\mathrm{cos}\:\mathrm{1}°+{i}\mathrm{sin}\:\mathrm{1}°\right)\left(\mathrm{cos}\:\mathrm{2}°+{i}\mathrm{sin}\:\mathrm{2}°\right)\ldots\left(\mathrm{cos}\:\mathrm{359}°+{i}\mathrm{sin}\:\mathrm{359}°\right). \\ $$
Question Number 137467 Answers: 1 Comments: 0
Question Number 137466 Answers: 0 Comments: 0
$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xtan}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 137461 Answers: 3 Comments: 0
Question Number 137458 Answers: 0 Comments: 0
Question Number 137448 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:? \\ $$
Question Number 137439 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:\:{calculus}..... \\ $$$$\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\chi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:\right)}{{x}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\:.... \\ $$
Question Number 137437 Answers: 2 Comments: 0
Question Number 137435 Answers: 0 Comments: 4
Question Number 137429 Answers: 0 Comments: 4
$$\mathrm{A}\:\mathrm{nuclide}\:_{\mathrm{81}} ^{\mathrm{210}} {X}\:\mathrm{decays}\:\mathrm{to}\:\mathrm{another}\:\mathrm{nuclide}\:_{\mathrm{80}} ^{{A}} {Y}\:\mathrm{in}\: \\ $$$$\mathrm{four}\:\mathrm{successive}\:\mathrm{radioactive}\:\mathrm{decays}.\:\mathrm{Each}\:\mathrm{decay} \\ $$$$\mathrm{involves}\:\mathrm{the}\:\mathrm{emmision}\:\mathrm{of}\:\mathrm{either}\:\mathrm{an}\:\mathrm{alpha}\:\mathrm{particle} \\ $$$$\mathrm{or}\:\mathrm{a}\:\mathrm{beta}\:\mathrm{particle}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{A}\:\mathrm{is}: \\ $$$$\mathrm{A}.\:\mathrm{120}\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{206} \\ $$$$\mathrm{C}.\:\mathrm{208}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{212} \\ $$
Question Number 137420 Answers: 0 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:......{mathematical}\:...\:...\:...\:{analysis}\left({II}\right)..... \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\:\mathbb{R}} \left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{\left({n}!\right)^{\mathrm{2}} }\right){dx}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......................... \\ $$
Question Number 137419 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:.........{mathematical}\:\:\:\:....\:\:\:{analysis}........ \\ $$$$\:\:\:\:\:\:\:{evaluate}.... \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\lambda\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda\:=\:??? \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 137415 Answers: 2 Comments: 4
$${solve} \\ $$$${x}+\sqrt{{x}\left({x}+\mathrm{1}\right)}+\sqrt{{x}\left({x}+\mathrm{2}\right)}+\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}=\mathrm{2} \\ $$
Question Number 137412 Answers: 1 Comments: 0
Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756 Pg 757
Terms of Service
Privacy Policy
Contact: info@tinkutara.com