Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 753

Question Number 134396    Answers: 1   Comments: 3

Question Number 134395    Answers: 0   Comments: 0

Question Number 134393    Answers: 0   Comments: 0

Σ_(k=0) ^∞ ((4^k (k!)^2 )/((2k+1)^2 (2k)!)) =?

$$\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{\mathrm{k}} \:\left(\mathrm{k}!\right)^{\mathrm{2}} }{\left(\mathrm{2k}+\mathrm{1}\right)^{\mathrm{2}} \:\left(\mathrm{2k}\right)!}\:=? \\ $$

Question Number 134391    Answers: 1   Comments: 0

Given f(x)=∫_0 ^( x) (((t^4 −t^2 )/(t^2 +1))) dt. Find minimum value of f(x).

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\:{x}} \:\left(\frac{{t}^{\mathrm{4}} −{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}\right)\:{dt}. \\ $$$$\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right). \\ $$

Question Number 134389    Answers: 1   Comments: 0

Eight dice are tossed. If the dice are identical in appearance , how many different−looking (distinguishable) occurrences are there?

$$\mathrm{Eight}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{tossed}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{identical}\:\mathrm{in} \\ $$$$\mathrm{appearance}\:,\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}−\mathrm{looking}\: \\ $$$$\left(\mathrm{distinguishable}\right)\:\mathrm{occurrences}\:\mathrm{are}\:\mathrm{there}? \\ $$

Question Number 134399    Answers: 0   Comments: 1

Question Number 134383    Answers: 2   Comments: 0

In a course a student gets grade C if his average in four test is between 50 and 60. Find the range of score X on the fourth test to ensure a grade C given that: (a) A student scores 65% , 55%, and 45% in the first three test. (b) A student score 70%, 60% and 55% on the first three test. (c) A student score 60% , 50% and 40% of the first three test. ase how do we solve such question I need help

$$\mathrm{In}\:\mathrm{a}\:\mathrm{course}\:\mathrm{a}\:\mathrm{student}\:\mathrm{gets}\:\mathrm{grade}\:\mathrm{C}\:\:\mathrm{if} \\ $$$$\mathrm{his}\:\mathrm{average}\:\mathrm{in}\:\:\mathrm{four}\:\mathrm{test}\:\mathrm{is}\:\mathrm{between}\: \\ $$$$\mathrm{50}\:\mathrm{and}\:\mathrm{60}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{score}\:\mathrm{X} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{test}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{a}\:\mathrm{grade}\:\mathrm{C} \\ $$$$\mathrm{given}\:\mathrm{that}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{A}\:\mathrm{student}\:\mathrm{scores}\:\mathrm{65\%}\:,\:\mathrm{55\%},\:\mathrm{and} \\ $$$$\:\mathrm{45\%}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{three}\:\mathrm{test}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{A}\:\mathrm{student}\:\mathrm{score}\:\mathrm{70\%},\:\mathrm{60\%}\:\mathrm{and} \\ $$$$\mathrm{55\%}\:\mathrm{on}\:\mathrm{the}\:\mathrm{first}\:\mathrm{three}\:\mathrm{test}. \\ $$$$\left(\mathrm{c}\right)\:\mathrm{A}\:\mathrm{student}\:\mathrm{score}\:\mathrm{60\%}\:,\:\mathrm{50\%}\:\mathrm{and} \\ $$$$\mathrm{40\%}\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{three}\:\mathrm{test}. \\ $$$$\mathrm{ase}\:\mathrm{how}\:\mathrm{do}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{such}\:\mathrm{question} \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{help} \\ $$

Question Number 134376    Answers: 0   Comments: 2

Question Number 134373    Answers: 1   Comments: 0

Question Number 134343    Answers: 0   Comments: 0

Question Number 134339    Answers: 0   Comments: 1

i can not find my saved pdf please tell me the process to find my pdf

$$\mathrm{i}\:\mathrm{can}\:\mathrm{not}\:\mathrm{find}\:\mathrm{my}\:\mathrm{saved}\:\mathrm{pdf}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{the}\:\mathrm{process}\:\mathrm{to}\:\mathrm{find}\:\mathrm{my}\:\mathrm{pdf} \\ $$

Question Number 134338    Answers: 0   Comments: 0

∫_0 ^( π/2) xln(sinx)dx

$$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$

Question Number 134335    Answers: 1   Comments: 0

Two Team A&B of workers at a bridge site. Each team consist of W workers. On a particular day, a worker was shifted from team A to team B . Now if the ratio of the amount of workdone by teamA in (W+1) he & by teamB in (W+2) hr is 10:12 rsp. Find W?

$$ \\ $$Two Team A&B of workers at a bridge site. Each team consist of W workers. On a particular day, a worker was shifted from team A to team B . Now if the ratio of the amount of workdone by teamA in (W+1) he & by teamB in (W+2) hr is 10:12 rsp. Find W?

Question Number 134331    Answers: 1   Comments: 0

cos^2 (((3π)/2)−x)=cos^2 (x+π) 0≤x≤π x=?

$$\mathrm{cos}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{2}}−\mathrm{x}\right)=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}+\pi\right) \\ $$$$\mathrm{0}\leqslant\mathrm{x}\leqslant\pi \\ $$$$\mathrm{x}=? \\ $$

Question Number 134329    Answers: 2   Comments: 0

How many ways can 15 basketball players be assigned to Team A, Team B, and Team C with 5 players on each team?

$$ \\ $$How many ways can 15 basketball players be assigned to Team A, Team B, and Team C with 5 players on each team?

Question Number 134328    Answers: 1   Comments: 0

express f(x)=x as a sine series in 0<x<π?

$${express}\:{f}\left({x}\right)={x}\:{as}\:{a}\:{sine}\:{series}\: \\ $$$${in}\:\mathrm{0}<{x}<\pi? \\ $$

Question Number 134327    Answers: 1   Comments: 0

Question Number 134417    Answers: 1   Comments: 0

Question Number 134323    Answers: 1   Comments: 0

A lens is required to have a power of −2.5 dioptres in air. the convex front surface has a radius of curvature of 30cm. calculate the radius of curvature of the rear surface

$${A}\:{lens}\:{is}\:{required}\:{to}\:{have}\:{a}\:{power}\:{of} \\ $$$$−\mathrm{2}.\mathrm{5}\:{dioptres}\:{in}\:{air}.\:{the}\:{convex} \\ $$$${front}\:{surface}\:{has}\:{a}\:{radius}\:{of}\:{curvature} \\ $$$${of}\:\mathrm{30}{cm}.\:{calculate}\:{the}\:{radius}\:{of}\:{curvature} \\ $$$${of}\:{the}\:{rear}\:{surface} \\ $$

Question Number 134319    Answers: 1   Comments: 1

the radii of curvatures of front and rear surfaces of a thin convex lens are 30cm and 12cm respectively. what is its focal length when placed inside water? (take the refractive indices of glass and water to be 1.52 and 1.33 respectively

$${the}\:{radii}\:{of}\:{curvatures}\:{of}\:{front}\:{and} \\ $$$${rear}\:{surfaces}\:{of}\:{a}\:{thin}\:{convex}\:{lens}\: \\ $$$${are}\:\mathrm{30}{cm}\:{and}\:\mathrm{12}{cm}\:{respectively}.\: \\ $$$${what}\:{is}\:{its}\:{focal}\:{length}\:{when}\:{placed} \\ $$$${inside}\:{water}?\:\left({take}\:{the}\:{refractive}\right. \\ $$$${indices}\:{of}\:{glass}\:{and}\:{water}\:{to}\:{be}\:\mathrm{1}.\mathrm{52} \\ $$$${and}\:\mathrm{1}.\mathrm{33}\:{respectively} \\ $$

Question Number 134320    Answers: 0   Comments: 0

Question Number 134303    Answers: 2   Comments: 0

F=∫_0 ^∞ ((16 arctan (x))/(1+x^2 )) dx

$$\mathcal{F}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{16}\:\mathrm{arctan}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 134302    Answers: 2   Comments: 0

∫_0 ^( 1) ((ln x)/( (√(1−x^2 )))) dx

$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\:{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\mathrm{dx} \\ $$

Question Number 134301    Answers: 3   Comments: 0

Ω = ∫_0 ^∞ (x^2 /((1+x^2 )^4 )) dx

$$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{4}} }\:{dx} \\ $$

Question Number 134297    Answers: 1   Comments: 0

Question Number 134296    Answers: 1   Comments: 0

  Pg 748      Pg 749      Pg 750      Pg 751      Pg 752      Pg 753      Pg 754      Pg 755      Pg 756      Pg 757   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com