Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 752

Question Number 141372    Answers: 3   Comments: 0

Question Number 141368    Answers: 2   Comments: 0

A closed cylindrical can be is to hold 1 liters of liquid . How should we choose the height and radius to minimize the amount of material needed to manufacture the can ?

$${A}\:{closed}\:{cylindrical}\:{can}\:{be}\:{is}\:{to}\:{hold} \\ $$$$\mathrm{1}\:{liters}\:{of}\:{liquid}\:.\:{How}\:{should}\:{we}\: \\ $$$${choose}\:{the}\:{height}\:{and}\:{radius}\: \\ $$$${to}\:{minimize}\:{the}\:{amount}\:{of} \\ $$$${material}\:{needed}\:{to}\:{manufacture} \\ $$$${the}\:{can}\:?\: \\ $$

Question Number 141367    Answers: 1   Comments: 0

∫((√(cosx∙senx)))dx

$$\int\left(\sqrt{{cosx}\centerdot{senx}}\right){dx} \\ $$

Question Number 141311    Answers: 0   Comments: 0

Show that ,C_n ^k +C_n ^(k−1) =C_(n+1) ^(n−k)

$$\mathrm{Show}\:\mathrm{that}\:,\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} +\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}−\mathrm{1}} =\mathrm{C}_{\mathrm{n}+\mathrm{1}} ^{\mathrm{n}−\mathrm{k}} \\ $$

Question Number 141308    Answers: 1   Comments: 0

Question Number 141303    Answers: 3   Comments: 1

Question Number 141304    Answers: 0   Comments: 1

Question Number 141388    Answers: 1   Comments: 0

∫_0 ^(π/2) (√((senx∙cosx)))dx Help

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt{\left({senx}\centerdot{cosx}\right)}{dx} \\ $$$${Help} \\ $$

Question Number 141387    Answers: 1   Comments: 0

∫_(−π/4) ^(π/4) (sec^2 x+tgx)^2 dx

$$\int_{−\pi/\mathrm{4}} ^{\pi/\mathrm{4}} \left({sec}^{\mathrm{2}} {x}+{tgx}\right)^{\mathrm{2}} {dx} \\ $$

Question Number 141380    Answers: 0   Comments: 0

Question Number 141378    Answers: 2   Comments: 0

prove that:: Π_(n=0) ^∞ (((5n+2)(5n+3))/((5n+1)(5n+4))) =ϕ ϕ:= ((1+(√5))/2)

$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{5}{n}+\mathrm{2}\right)\left(\mathrm{5}{n}+\mathrm{3}\right)}{\left(\mathrm{5}{n}+\mathrm{1}\right)\left(\mathrm{5}{n}+\mathrm{4}\right)}\:=\varphi\: \\ $$$$\:\:\:\:\:\:\:\varphi:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Question Number 141294    Answers: 5   Comments: 0

Find max & min value of f(x)=(x/(x^2 −5x+9)).

$${Find}\:{max}\:\&\:{min}\:{value}\:{of} \\ $$$$\:{f}\left({x}\right)=\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{9}}. \\ $$

Question Number 141328    Answers: 2   Comments: 0

...... Evaluate: F :=Σ_(n=2) ^∞ (((−1)^n ζ(n))/(n+1)) =? .......

$$......\:{Evaluate}: \\ $$$$\:\:\:\:\:\mathscr{F}\::=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{{n}+\mathrm{1}}\:=? \\ $$$$....... \\ $$

Question Number 141312    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (−1)^n ((Si(2πn)−(π/2))/n)=?

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{Si}\left(\mathrm{2}\pi{n}\right)−\frac{\pi}{\mathrm{2}}}{{n}}=? \\ $$

Question Number 141289    Answers: 1   Comments: 1

Question Number 141381    Answers: 0   Comments: 0

Let a,b ≥ 0 . Prove that (a+b+2)^3 ≥ ((27)/2)(a^2 +ab+b^2 )

$$\mathrm{Let}\:\:{a},{b}\:\geqslant\:\mathrm{0}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+{b}+\mathrm{2}\right)^{\mathrm{3}} \:\geqslant\:\frac{\mathrm{27}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 141291    Answers: 0   Comments: 3

Question Number 141269    Answers: 1   Comments: 3

θ+φ+ψ=π (angles of a △) find maximum of (φ−θ)^2 +(ψ−φ)^2 +(ψ−θ)^2 .

$$\theta+\phi+\psi=\pi\:\:\left({angles}\:{of}\:{a}\:\bigtriangleup\right) \\ $$$${find}\:{maximum}\:{of} \\ $$$$\:\left(\phi−\theta\right)^{\mathrm{2}} +\left(\psi−\phi\right)^{\mathrm{2}} +\left(\psi−\theta\right)^{\mathrm{2}} \:. \\ $$

Question Number 141412    Answers: 1   Comments: 2

Find the range of real number of q such that the function f(x) = cos x(q sin^2 x−5) have minimum value is −5 .

$$\:{Find}\:{the}\:{range}\:{of}\:{real}\:{number} \\ $$$${of}\:{q}\:{such}\:{that}\:{the}\:{function}\: \\ $$$$\:{f}\left({x}\right)\:=\:\mathrm{cos}\:{x}\left({q}\:\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{5}\right)\:{have} \\ $$$${minimum}\:{value}\:{is}\:−\mathrm{5}\:. \\ $$

Question Number 141283    Answers: 0   Comments: 0

((ζ(2))/2^3 )−((ζ(3))/3^3 )+((ζ(4))/4^3 )−((ζ(5))/5^3 )+...

$$\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}^{\mathrm{3}} }+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{5}^{\mathrm{3}} }+... \\ $$

Question Number 141257    Answers: 0   Comments: 0

Question Number 141252    Answers: 1   Comments: 0

Question Number 141249    Answers: 2   Comments: 1

Question Number 141246    Answers: 1   Comments: 0

r=q+1 pq=q+1 c^2 p=qr^2 , help find p, q, r.

$${r}={q}+\mathrm{1} \\ $$$${pq}={q}+\mathrm{1} \\ $$$${c}^{\mathrm{2}} {p}={qr}^{\mathrm{2}} \:\:\:,\:{help}\:{find}\:{p},\:{q},\:{r}. \\ $$

Question Number 141244    Answers: 1   Comments: 1

I=∫_0 ^( ∞) ((x{(a^2 −b^2 )x−2a^2 x^2 −2b^2 }dx)/((a^2 x^2 +b^2 )^2 {(a^2 −b^2 )x+a^2 x^2 +b^2 }))

$${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}\left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}−\mathrm{2}{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right\}{dx}}{\left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right\}} \\ $$

Question Number 141240    Answers: 0   Comments: 0

Solve using fourier′s series −y′′+y=e^(−2∣x∣)

$$\mathrm{Solve}\:\mathrm{using}\:\mathrm{fourier}'\mathrm{s}\:\mathrm{series} \\ $$$$−\mathrm{y}''+\mathrm{y}=\mathrm{e}^{−\mathrm{2}\mid\mathrm{x}\mid} \\ $$

  Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752      Pg 753      Pg 754      Pg 755      Pg 756   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com