Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 752
Question Number 138691 Answers: 1 Comments: 0
$$\int\:\mathrm{cos}\:\mathrm{2}{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\:=? \\ $$
Question Number 138683 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:..\:...\:...\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {sin}^{\mathrm{2}} \left({n}\right)}{{n}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......................... \\ $$
Question Number 138690 Answers: 1 Comments: 1
$$\left(\frac{\mathrm{x}}{\mathrm{12}}\right)^{\mathrm{log}_{\sqrt{\mathrm{3}}} \mathrm{x}} =\left(\frac{\mathrm{x}}{\mathrm{18}}\right)^{\mathrm{log}_{\sqrt{\mathrm{2}}} \mathrm{x}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 138673 Answers: 4 Comments: 3
$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}=\mathrm{72} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{4} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}=? \\ $$
Question Number 138661 Answers: 0 Comments: 3
Question Number 138658 Answers: 1 Comments: 2
Question Number 138656 Answers: 1 Comments: 0
$${I}=\int\frac{{dx}}{\left({px}+{q}\right)\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}} \\ $$
Question Number 138643 Answers: 2 Comments: 0
Question Number 138641 Answers: 1 Comments: 0
Question Number 138628 Answers: 1 Comments: 1
$${find}\:{the}\:{region}\:{in}\:{which}\:{the}\:{function}\: \\ $$$$ \\ $$$${f}\left({z}\right)=\frac{{log}\left({z}−\mathrm{2}{i}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:{is}\:{analytic}\:? \\ $$$$ \\ $$$${help}\:{me}\:{sir}\: \\ $$
Question Number 138627 Answers: 2 Comments: 1
$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\mathrm{16}^{\boldsymbol{\mathrm{x}}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 142444 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {{lim}}\:\frac{{tan}^{\mathrm{2}} {x}−\sqrt{\mathrm{3}}{tanx}}{{cos}\left({x}+\frac{\pi}{\mathrm{6}}\right)}=? \\ $$
Question Number 142443 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{F}\left({x}\right)\:=\:\int_{\:{x}} ^{\:\:{x}^{\mathrm{2}} } \frac{\mathrm{1}}{\:\mathrm{ln}\left({t}\right)\:}\:\mathrm{d}{t} \\ $$$$\:\:\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{F}\left({x}\right)\:\mid\:\:\leqslant\:\:\frac{\mid\:{x}^{\mathrm{2}} \:−\:{x}\:\mid}{\mid\:\mathrm{ln}\left({x}\right)\:\mid} \\ $$$$ \\ $$$$\mathrm{Please} \\ $$
Question Number 138624 Answers: 0 Comments: 0
$$\frac{\mathrm{1}^{\pi} }{\mathrm{3}!}+\frac{\mathrm{2}^{\pi} }{\mathrm{5}!}+\frac{\mathrm{3}^{\pi} }{\mathrm{7}!}+\frac{\mathrm{4}^{\pi} }{\mathrm{9}!}+\frac{\mathrm{5}^{\pi} }{\mathrm{11}!}+... \\ $$
Question Number 138621 Answers: 1 Comments: 0
Question Number 138619 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \left({e}^{−{x}^{\sqrt{\mathrm{3}}} } −\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{3}}} \right)^{\sqrt{\mathrm{3}}} }\right)\frac{{dx}}{{x}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\psi\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$
Question Number 138613 Answers: 1 Comments: 0
Question Number 138612 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{z}+\:\frac{\mathrm{1}}{\mathrm{z}}\:=\mathrm{2cos}\beta\:.\mathrm{show}\:\mathrm{that}\:\mathrm{z}^{\mathrm{m}} +\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{m}} }\:=\mathrm{2cosm}\beta. \\ $$
Question Number 138611 Answers: 2 Comments: 0
$${Given}\:{a}\:{function}\:{f}\:{where}\: \\ $$$${f}\left({x}\right)\geqslant\:\mathrm{0}{for}\:\forall{x}\in\mathbb{R}.\:{If}\:{the}\:{area} \\ $$$${U}\:=\:\left\{\:\left({x},{y}\right)\mid\mathrm{0}\leqslant\mathrm{2}{y}\leqslant{f}\left({x}\right),\:−\mathrm{6}\leqslant{x}\leqslant−\mathrm{2}\right\} \\ $$$${is}\:{u}\:{and}\:{the}\:{area}\:{V}=\left\{\left({x},{y}\right)\mid\mathrm{0}\leqslant{y}\leqslant{f}\left({x}\right),−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}\right\} \\ $$$${is}\:{v}\:{then}\:{what}\:{the}\:{value}\:{of} \\ $$$$\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\mathrm{4}{x}\:{f}\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}\right)\:{dx}\:. \\ $$$$\left({A}\right)\:\mathrm{5}{u}+\mathrm{4}{v}\:\:\:\:\:\left({D}\right)\mathrm{2}{u}+{v} \\ $$$$\left({B}\right)\:\mathrm{4}{u}+\mathrm{3}{v}\:\:\:\:\left({E}\right)\:{u}+{v} \\ $$$$\left({C}\right)\:\mathrm{3}{u}+\mathrm{2}{v} \\ $$
Question Number 138608 Answers: 0 Comments: 0
$${Prove}\:{or}\:{disprove} \\ $$$$\int_{\mathrm{0}} ^{{a}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\mathrm{1}}{{e}^{{a}^{\mathrm{2}} } }\left(\frac{{a}^{\mathrm{3}} }{\mathrm{1}.\mathrm{3}}+\frac{\mathrm{2}{a}^{\mathrm{5}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}}+\frac{\mathrm{2}{a}^{\mathrm{7}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}+\frac{\mathrm{2}{a}^{\mathrm{9}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}.\mathrm{9}}+{ad}\:{inf}..\right) \\ $$
Question Number 138631 Answers: 1 Comments: 3
Question Number 138603 Answers: 0 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{2}\pi\mathrm{i}}\underset{\mathrm{T}\rightarrow\infty} {\mathrm{lim}}\underset{\gamma−\mathrm{iT}} {\overset{\gamma+\mathrm{iT}} {\int}}\frac{\mathrm{e}^{\mathrm{st}} }{\mathrm{s}−\mathrm{a}}\mathrm{ds} \\ $$
Question Number 138600 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({k}\right)={f}\left(\mathrm{1}\right)+\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\frac{\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} {f}\left({i}+\mathrm{1}\right){C}_{{i}−\mathrm{1}} ^{{k}−\mathrm{2}} }{\left({k}−\mathrm{1}\right)!}\:\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\prod}}\left({n}−{i}\right)\right) \\ $$
Question Number 138598 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left(\mathrm{2}{n}+\mathrm{3}\right)}\left(\frac{\mathrm{4}}{\pi}\right)^{{n}} =? \\ $$
Question Number 138594 Answers: 0 Comments: 2
Question Number 138580 Answers: 3 Comments: 1
Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756
Terms of Service
Privacy Policy
Contact: info@tinkutara.com