Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 752
Question Number 143262 Answers: 1 Comments: 0
$${developp}\:{at}\:{fourier}\:{serie} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{cosx}\:+\mathrm{2}{sinx}} \\ $$
Question Number 143261 Answers: 1 Comments: 0
$${find}\:{Y}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right)} \\ $$$$\left({n}>\mathrm{1}\:{integr}\right) \\ $$
Question Number 143260 Answers: 0 Comments: 1
$${find}\:\int\:\frac{{dx}}{\:\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}} \\ $$
Question Number 143259 Answers: 1 Comments: 0
$${solve}\:{y}^{''} −{y}^{'} +\mathrm{2}={xsin}\left(\mathrm{3}{x}\right) \\ $$
Question Number 143258 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \int_{{x}} ^{{x}^{\mathrm{2}} } \:\frac{{sh}\left({xt}\right)}{{x}+{t}}{dt} \\ $$
Question Number 143257 Answers: 0 Comments: 0
$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {arctan}\left(\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dxdy} \\ $$
Question Number 143256 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{{x}} ^{\mathrm{2}−{x}} {e}^{−{xy}} \sqrt{{x}+{y}}{dy}\:{dx} \\ $$
Question Number 143255 Answers: 2 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\left(\mathrm{1}−{cosx}\right)+\mathrm{1}−{cos}\left({sinx}\right)}{{x}^{\mathrm{2}} } \\ $$
Question Number 143254 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)} \\ $$
Question Number 143253 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}^{\mathrm{3}} \right)}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 143252 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8}{x}−\mathrm{6}{x}\:\mathrm{sin}\:{x}+\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{5}} }\:=? \\ $$
Question Number 143251 Answers: 4 Comments: 0
Question Number 143248 Answers: 1 Comments: 1
$$\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}} \\ $$
Question Number 143240 Answers: 1 Comments: 0
$$\frac{\mathrm{2}}{{y}}=\frac{\mathrm{1}}{{x}}\left(\frac{{a}}{{y}}+\mathrm{1}\right) \\ $$$${x}=\mathrm{2}\left(\mathrm{4}{a}−{y}\right) \\ $$$${Is}\:{equations}\:{system} \\ $$
Question Number 143239 Answers: 0 Comments: 0
Question Number 143238 Answers: 1 Comments: 0
Question Number 143234 Answers: 1 Comments: 0
Question Number 143231 Answers: 0 Comments: 0
$$.....{mathematical}\:......{Analysis}.... \\ $$$$\:{if}\:::\:\:\:\boldsymbol{\phi}\left({n}\right):=\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\mathrm{2}{n}−\mathrm{1}} {log}\left(\mathrm{1}+{x}\right){dx} \\ $$$$\:{then}\:\:{find}\:\:{the}\:{value}\:{of}\:\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Theta:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \boldsymbol{\phi}\left({n}\right)\: \\ $$$$\:\:\:\:\:\:.......{m}.{n} \\ $$
Question Number 143230 Answers: 2 Comments: 0
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{x}^{\mathrm{3n}+\mathrm{1}} }{\mathrm{3n}+\mathrm{1}}=? \\ $$
Question Number 143229 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:\geqslant\:\mathrm{0}\:\mathrm{and}\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right)\left(\mathrm{1}+{c}\right)\:=\:\mathrm{8}. \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+\frac{\mathrm{2}{b}+\mathrm{1}}{{a}+{b}+\mathrm{1}}\right)\left({b}+\frac{\mathrm{2}{c}+\mathrm{1}}{{b}+{c}+\mathrm{1}}\right)\left({c}+\frac{\mathrm{2}{a}+\mathrm{1}}{{c}+{a}+\mathrm{1}}\right)\:\geqslant\:\mathrm{8}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 143225 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left({n}!\right)}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left(\int_{\mathrm{0}} ^{\:\infty} {t}^{{n}} .{e}^{−{t}} \:\:{dt}\right)} \\ $$
Question Number 143222 Answers: 1 Comments: 0
$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{by}\:\mathrm{expand} \\ $$$$\left({z}+\frac{\mathrm{1}}{{z}}\right)^{\mathrm{4}} \left({z}−\frac{\mathrm{1}}{{z}}\right)^{\mathrm{4}} \mathrm{or}\:\mathrm{other}\:\mathrm{method}, \\ $$$$\mathrm{prove}\:\mathrm{128}\:\mathrm{sin}^{\mathrm{4}} \theta\mathrm{cos}^{\mathrm{4}} \theta=\mathrm{cos}\:\mathrm{8}\theta−\mathrm{4cos}\:\mathrm{4}\theta+\mathrm{3}. \\ $$
Question Number 143219 Answers: 0 Comments: 1
Question Number 143210 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{7}^{{x}+\mathrm{1}} +\mathrm{3}^{{x}+\mathrm{1}} }{{x}+\mathrm{1}}{dx} \\ $$
Question Number 143208 Answers: 1 Comments: 0
$$\mathrm{3}^{{x}} +\mathrm{4}{x}−\mathrm{3}={x}^{\mathrm{4}} \\ $$$${find}\:{x} \\ $$
Question Number 143200 Answers: 1 Comments: 0
Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756
Terms of Service
Privacy Policy
Contact: info@tinkutara.com