Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 752
Question Number 137588 Answers: 1 Comments: 0
$${For}\:{a}\:{positive}\:{number}\:{n}\:,\:{let} \\ $$$${f}\left({n}\right)\:{be}\:{the}\:{value}\:{of}\: \\ $$$${f}\left({n}\right)=\frac{\mathrm{4}{n}+\sqrt{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}\:+\sqrt{\mathrm{2}{n}−\mathrm{1}}} \\ $$$${calculate}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+...+{f}\left(\mathrm{40}\right). \\ $$
Question Number 137585 Answers: 2 Comments: 0
$${Find}\:{the}\:{cube}\:{of}\:{the}\:{number}\: \\ $$$${N}=\:\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}...}}}}}}}} \\ $$
Question Number 137584 Answers: 1 Comments: 0
$${Given}\:\begin{cases}{{a}_{\mathrm{2}{n}} \:=\:{a}_{{n}} .{a}_{\mathrm{2}} \:+\mathrm{1}}\\{{a}_{\mathrm{2}{n}+\mathrm{1}} \:=\:{a}_{{n}} .{a}_{\mathrm{2}} \:−\mathrm{2}\:}\end{cases}\:{and} \\ $$$$\:\begin{cases}{{a}_{\mathrm{7}} \:=\:\mathrm{2}}\\{\mathrm{0}<{a}_{\mathrm{1}} <\mathrm{1}}\end{cases}.\:{Find}\:{a}_{\mathrm{25}} \:=? \\ $$$$ \\ $$
Question Number 137582 Answers: 1 Comments: 0
$$\mathrm{A}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 137579 Answers: 1 Comments: 0
$$\left(−\mathrm{1}\right)×\frac{\mathrm{1}}{\pi.{i}}\:=?\: \\ $$
Question Number 137575 Answers: 0 Comments: 0
Question Number 137574 Answers: 0 Comments: 0
Question Number 137568 Answers: 0 Comments: 2
Question Number 137563 Answers: 2 Comments: 0
$${let}\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }={k} \\ $$$${find}\:{the}\:{value}\:{of}\:\frac{{x}^{\mathrm{8}} +{y}^{\mathrm{8}} }{{x}^{\mathrm{8}} −{y}^{\mathrm{8}} }+\frac{{x}^{\mathrm{8}} −{y}^{\mathrm{8}} }{{x}^{\mathrm{8}} +{y}^{\mathrm{8}} } \\ $$$${in}\:{terms}\:{of}\:{k} \\ $$
Question Number 137559 Answers: 0 Comments: 2
$$ \\ $$What is the volume of tetrahedron ABCD, whose vertices have the coordinates A (2, 3, 6), B (3, 2, 2), C (3, 4, 7) and D (5, 1, 8). Find the lateral surface area of the tetrahedron and find the volume of the tetrahedron?
Question Number 137558 Answers: 1 Comments: 0
$$\left({x}+{y}\right){dx}\:+\:\left({x}+{y}^{\mathrm{2}} \right){dy}\:=\:\mathrm{0}\: \\ $$
Question Number 137556 Answers: 0 Comments: 0
Question Number 137547 Answers: 0 Comments: 1
Question Number 137545 Answers: 0 Comments: 0
Question Number 137538 Answers: 0 Comments: 0
$${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 137536 Answers: 1 Comments: 0
$${calculte}\:\int_{−\infty} ^{\infty} \:\frac{{sin}\left(\pi{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 137535 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 137530 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\right)+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\beta\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}^{\mathrm{2}} \alpha+\mathrm{sin}^{\mathrm{2}} \beta.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$
Question Number 137528 Answers: 3 Comments: 1
Question Number 137525 Answers: 0 Comments: 0
Question Number 137523 Answers: 1 Comments: 0
$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}!−\mathrm{1}}{\mathrm{x}} \\ $$
Question Number 137518 Answers: 1 Comments: 0
$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{u}^{\mathrm{2}} +\mathrm{2}}{\mathrm{u}^{\mathrm{4}} +\mathrm{2u}^{\mathrm{2}} +\mathrm{2}}\mathrm{du} \\ $$
Question Number 137509 Answers: 2 Comments: 1
$$\int\:\frac{\mathrm{sin}\:\left(\sqrt{{x}}\:\right)+\mathrm{cos}\:\left(\sqrt{{x}}\:\right)}{\:\sqrt{{x}}\:\mathrm{sin}\:\left(\mathrm{2}\sqrt{{x}}\:\right)}\:{dx}\: \\ $$
Question Number 137508 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{3}} }\:{dx}\:=? \\ $$
Question Number 137501 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:....{advanced}\:....\:{calculus}.... \\ $$$$\:\:{prove}\:{that}:: \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}=\frac{\mathrm{13}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}{ln}\left(\mathrm{2}\right).... \\ $$
Question Number 137482 Answers: 2 Comments: 0
Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755 Pg 756
Terms of Service
Privacy Policy
Contact: info@tinkutara.com