Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 751

Question Number 135176    Answers: 0   Comments: 0

The chord of contact of tangents fromP to a cicle pass through Q.If lengths of tangents from P,Q are l_1 ,l_2 then PQ is (√(l_1 ^2 +l_2 ^2 )) how...kindly tell

$${The}\:{chord}\:{of}\:{contact}\:{of}\:{tangents}\:{fromP} \\ $$$${to}\:{a}\:{cicle}\:{pass}\:{through}\:{Q}.{If}\:{lengths}\:{of}\:{tangents}\:{from}\:{P},{Q} \\ $$$${are}\:{l}_{\mathrm{1}} ,{l}_{\mathrm{2}} \:{then}\:{PQ}\:{is}\:\sqrt{{l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} }\:{how}...{kindly}\:{tell} \\ $$

Question Number 135174    Answers: 1   Comments: 0

Z = ∫_0 ^( π/2) arctan (sin x) dx + ∫_0 ^( π/4) arcsin (tan x) dx

$$\mathcal{Z}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{arctan}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \mathrm{arcsin}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 135173    Answers: 2   Comments: 0

Question Number 135167    Answers: 0   Comments: 0

Question Number 135172    Answers: 2   Comments: 0

(x^2 −9)^(3x+5) = (x−3)^(x−1) .(x+3)^(x−1) Find solution

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{3x}+\mathrm{5}} \:=\:\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{x}−\mathrm{1}} .\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{x}−\mathrm{1}} \\ $$$$\mathrm{Find}\:\mathrm{solution} \\ $$

Question Number 135170    Answers: 1   Comments: 0

1+(2/3)+(3/3^2 )+(4/3^3 )+(5/3^4 )+(6/3^5 )+... =?

$$\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{4}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{5}}{\mathrm{3}^{\mathrm{4}} }+\frac{\mathrm{6}}{\mathrm{3}^{\mathrm{5}} }+...\:=?\: \\ $$$$ \\ $$

Question Number 135169    Answers: 0   Comments: 0

What is the remainder when x^(81) +x^(49) +x^(25) + x^9 + x is divided by x^3 +x

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\: \\ $$$$\mathrm{x}^{\mathrm{81}} +\mathrm{x}^{\mathrm{49}} +\mathrm{x}^{\mathrm{25}} +\:\mathrm{x}^{\mathrm{9}} +\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{3}} +\mathrm{x}\: \\ $$

Question Number 135148    Answers: 0   Comments: 0

Question Number 135149    Answers: 0   Comments: 0

Question Number 135165    Answers: 0   Comments: 1

Solve Brachistochrone Curve Problem

$${Solve}\:{Brachistochrone}\:{Curve}\:{Problem} \\ $$

Question Number 135158    Answers: 0   Comments: 0

{2,3}□{1,5}=?

$$\left\{\mathrm{2},\mathrm{3}\right\}\square\left\{\mathrm{1},\mathrm{5}\right\}=? \\ $$

Question Number 135145    Answers: 1   Comments: 0

∫_0 ^3 x^3 (√(x^2 +9)) dx=?

$$\int_{\mathrm{0}} ^{\mathrm{3}} {x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} +\mathrm{9}}\:{dx}=? \\ $$

Question Number 135143    Answers: 0   Comments: 4

.....nice calculus... please calculate:↓↓↓ ::: 𝛗=^(??) Σ_(n=1) ^∞ (H_n ^^2 /n^2 )

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{nice}\:\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:{please}\:\:{calculate}:\downarrow\downarrow\downarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\::::\:\:\boldsymbol{\phi}\overset{??} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} ^{\:^{\mathrm{2}} } }{{n}^{\mathrm{2}} }\:\: \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 135231    Answers: 0   Comments: 0

∫(√((x^2 +x)^3 )) dx help me

$$ \\ $$$$\:\:\int\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$$$ \\ $$$$\:\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$

Question Number 135128    Answers: 1   Comments: 4

Question Number 135127    Answers: 1   Comments: 0

∫_0 ^1 log^2 (Γ(x))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}^{\mathrm{2}} \left(\Gamma\left({x}\right)\right){dx} \\ $$

Question Number 135121    Answers: 0   Comments: 0

Question Number 135120    Answers: 0   Comments: 0

Question Number 135119    Answers: 0   Comments: 0

Question Number 135118    Answers: 0   Comments: 0

Question Number 135117    Answers: 0   Comments: 0

Question Number 135112    Answers: 0   Comments: 9

Question Number 135111    Answers: 2   Comments: 0

Question Number 135110    Answers: 0   Comments: 1

Question Number 135108    Answers: 1   Comments: 0

((√((x−1)/x)) )^x^2 = ((1/x))^(x+1)

$$\left(\sqrt{\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}}\:\right)^{\mathrm{x}^{\mathrm{2}} } \:=\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}+\mathrm{1}} \\ $$

Question Number 135103    Answers: 0   Comments: 1

f(x)=1+Σ_(n=2) ^∞ (((−x)^n )/n)

$${f}\left({x}\right)=\mathrm{1}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−{x}\right)^{{n}} }{{n}} \\ $$

  Pg 746      Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752      Pg 753      Pg 754      Pg 755   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com