Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 751
Question Number 143094 Answers: 1 Comments: 0
Question Number 143090 Answers: 0 Comments: 0
Question Number 143087 Answers: 2 Comments: 0
Question Number 143086 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{Evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{ln}\left({tan}\left({x}\right)\right).{sin}^{\pi^{{e}} } \left(\mathrm{2}{x}\right)}{\left({sin}^{\pi^{{e}} } \left({x}\right)+{cos}^{\pi^{{e}} } \left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$ \\ $$
Question Number 143085 Answers: 0 Comments: 0
$$\phi\left({n}^{\mathrm{4}} +\mathrm{1}\right)=\mathrm{8}{n}\:\:\:\:\:\:\phi:{Euler}\:{totient}\:{function} \\ $$$${Solve}\:{for}\:{n}\in\mathbb{N} \\ $$
Question Number 143083 Answers: 1 Comments: 0
$${calculate}\:\Psi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$
Question Number 143082 Answers: 2 Comments: 0
$${calculate}\:{f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }{dx} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$
Question Number 143081 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {arctanx}\:{dx} \\ $$
Question Number 143080 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 143077 Answers: 1 Comments: 0
$${sin}^{\mathrm{5}} {x}\:+\:{cos}^{\mathrm{5}} {x}\:=\:\mathrm{2}\:−\:{sin}^{\mathrm{4}} {x} \\ $$
Question Number 143072 Answers: 1 Comments: 0
Question Number 143071 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{8}{dx}}{{tgx}+\mathrm{1}} \\ $$
Question Number 143064 Answers: 4 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\sqrt[{\mathrm{4}}]{\mathrm{1}−\mathrm{2x}}}{\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}−\mathrm{1}}\:=? \\ $$
Question Number 143063 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right)\boldsymbol{\mathrm{cos}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right)\boldsymbol{\mathrm{cos}}\left(\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right).....\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\mathrm{n}\pi}}{\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{\mathrm{n}}} } \\ $$$$\boldsymbol{\mathrm{prove}} \\ $$
Question Number 143057 Answers: 1 Comments: 0
$$\mathrm{cos}\left(\boldsymbol{\alpha}\right)×\mathrm{cos}\left(\mathrm{2}\alpha\right)×\mathrm{cos}\left(\mathrm{4}\alpha\right)×....×\mathrm{cos}\left(\mathrm{2}^{\mathrm{n}} \boldsymbol{\alpha}\right)=\frac{\boldsymbol{\mathrm{sin}}\left(\mathrm{2}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \boldsymbol{\alpha}\right)}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{sin}\left(\alpha\right)} \\ $$$$\boldsymbol{\mathrm{prove}} \\ $$
Question Number 143048 Answers: 1 Comments: 0
Question Number 143047 Answers: 2 Comments: 0
Question Number 143046 Answers: 1 Comments: 0
Question Number 143045 Answers: 1 Comments: 0
Question Number 143043 Answers: 1 Comments: 0
Question Number 143042 Answers: 1 Comments: 0
Question Number 143041 Answers: 0 Comments: 2
$${If}\:{f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}\:{then}\:{the}\:{value} \\ $$$${of}\:\left(\mathrm{1}−\frac{\mathrm{2}}{{f}\left(\mathrm{1}\right)}\right)\left(\mathrm{1}−\frac{\mathrm{2}}{{f}\left(\mathrm{2}\right)}\right)\left(\mathrm{1}−\frac{\mathrm{2}}{{f}\left(\mathrm{3}\right)}\right)...\left(\mathrm{1}−\frac{\mathrm{2}}{{f}\left(\mathrm{2021}\right)}\right)=? \\ $$
Question Number 143039 Answers: 0 Comments: 0
$$\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${x}=? \\ $$
Question Number 143051 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:_{\ast\ast\ast\ast\ast} ::\:\:{Lobachevsky}\:{Integral}\:::_{\ast\ast\ast\ast\ast} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{s}{in}^{\mathrm{2}} \left(\:{tan}\left({x}\right)\right)}{{x}^{\:\mathrm{2}} }{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:.......... \\ $$
Question Number 143036 Answers: 0 Comments: 0
$$\:{x}^{\mathrm{3}/\mathrm{2}} +{x}^{\mathrm{1}/\mathrm{2}} +\left({x}−{c}\right)\left(\frac{\mathrm{3}{x}+\mathrm{1}}{\mathrm{3}+{x}}\right)^{\mathrm{3}/\mathrm{2}} =\mathrm{0} \\ $$
Question Number 143032 Answers: 1 Comments: 0
$$\:\:\:\:\:\int\:\mathrm{sin}^{−\mathrm{5}} {x}\:{dx}\:=? \\ $$
Pg 746 Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753 Pg 754 Pg 755
Terms of Service
Privacy Policy
Contact: info@tinkutara.com