.....mathematical ....analysis.....
suppose f :[a , b]→R is a function
and α:[a , b]→^(α↗) R (α is an increasing function
on [a , b]) meanwhile α is continuous at y_0
where a≤y_0 ≤b . defining
f(x)= { (( 1 x=y_0 )),(( 0 x≠y_0 )) :}
prove that : f∈ R (α) ....
Hint: f∈R (α) ⇔ ∀ ε>0 ∃ P_ε ; U(P_ε ,f,α)−L(P_ε ,f,α)<ε
Reimann criterion ....
|