The first two terms of the {a_n } series are defind as a_n =a_(n−1) +a_(n−2) for the general term
a_1 =5, a_2 =8 and n≥3 .
since the L=lim_(n→∞) (a_(n+1) /a_n ) what is the value of L
1−Montrer par recurrence que la transformee deLaplace suivante
L(f^n (t))(p)=p^n L(f(t)(p)−p^(n−1) f(0^+ )−p^(n−2) f ′(0^+ )−.......−f^((n−1)) (0^+ )
2−Calaculer partir de L(sint)(p) la transforme L(((sint)/t))(p)