Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 750

Question Number 144086    Answers: 1   Comments: 0

If sin t + cos t = (2/3) then cosec t+sec t =?

$$\mathrm{If}\:\mathrm{sin}\:\mathrm{t}\:+\:\mathrm{cos}\:\:\mathrm{t}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{cosec}\:\mathrm{t}+\mathrm{sec}\:\mathrm{t}\:=? \\ $$

Question Number 144085    Answers: 1   Comments: 1

Question Number 143814    Answers: 1   Comments: 0

∀a;b;c∈R , find all f:R→R , such that f(a)f(bc)+9≤f(ab)+5f(ac)

$$\forall{a};{b};{c}\in\mathbb{R}\:,\:{find}\:{all}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:,\:{such}\:{that} \\ $$$${f}\left({a}\right){f}\left({bc}\right)+\mathrm{9}\leqslant{f}\left({ab}\right)+\mathrm{5}{f}\left({ac}\right) \\ $$

Question Number 143812    Answers: 1   Comments: 0

log _a (ax).log _x (ax)=log _a^2 ((1/a)) a>0 , a≠1 . So x = ?

$$\:\mathrm{log}\:_{\mathrm{a}} \left(\mathrm{ax}\right).\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{ax}\right)=\mathrm{log}\:_{\mathrm{a}^{\mathrm{2}} } \left(\frac{\mathrm{1}}{\mathrm{a}}\right) \\ $$$$\:\mathrm{a}>\mathrm{0}\:,\:\mathrm{a}\neq\mathrm{1}\:.\:\mathrm{So}\:\mathrm{x}\:=\:? \\ $$

Question Number 143811    Answers: 1   Comments: 0

{ ((5(log _y (x)+log _x (y))=26)),(( xy = 64)) :}then x^2 +y^2 +xy =?

$$\:\begin{cases}{\mathrm{5}\left(\mathrm{log}\:_{\mathrm{y}} \left(\mathrm{x}\right)+\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{y}\right)\right)=\mathrm{26}}\\{\:\mathrm{xy}\:=\:\mathrm{64}}\end{cases}\mathrm{then} \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{xy}\:=? \\ $$

Question Number 143810    Answers: 2   Comments: 0

∫cos(cosx)dx=?

$$\:\:\:\:\int\mathrm{cos}\left(\mathrm{cosx}\right)\mathrm{dx}=? \\ $$

Question Number 144132    Answers: 2   Comments: 0

Question Number 143827    Answers: 1   Comments: 0

Question Number 143790    Answers: 0   Comments: 2

Π_(n=1) ^∞ (1+(x^3 /n^3 ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{3}} }{{n}^{\mathrm{3}} }\right) \\ $$

Question Number 143786    Answers: 1   Comments: 1

∫_(−∞) ^( ∞) (e^(iax) /(1+x^2 ))dx how can it solve this

$$\int_{−\infty} ^{\:\infty} \frac{{e}^{{iax}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:{how}\:{can}\:{it}\:{solve}\:{this} \\ $$

Question Number 143776    Answers: 1   Comments: 0

x×y′′−y=x^3

$$\mathrm{x}×\mathrm{y}''−\mathrm{y}=\mathrm{x}^{\mathrm{3}} \\ $$

Question Number 143775    Answers: 1   Comments: 0

x×y′′−y=x^ 3

$$\mathrm{x}×\mathrm{y}''−\mathrm{y}=\hat {\mathrm{x}3} \\ $$

Question Number 143774    Answers: 1   Comments: 2

Is this statement true or not? ∃ A∈M_3 (R) ∣ tr(A)=0 and A^2 +^t A=I_3

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{statement}\:{true}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\exists\:\mathrm{A}\in\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)\:\mid\:\mathrm{tr}\left(\mathrm{A}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{A}^{\mathrm{2}} +^{{t}} \mathrm{A}=\mathrm{I}_{\mathrm{3}} \\ $$

Question Number 143783    Answers: 4   Comments: 0

Ω :=∫_(−∞) ^( ∞) ((log(2+x^( 2) ))/(4+x^( 2) ))dx=?

$$ \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{−\infty} ^{\:\infty} \frac{{log}\left(\mathrm{2}+{x}^{\:\mathrm{2}} \right)}{\mathrm{4}+{x}^{\:\mathrm{2}} }{dx}=? \\ $$$$ \\ $$

Question Number 143781    Answers: 3   Comments: 0

Question Number 143808    Answers: 2   Comments: 0

Question Number 143769    Answers: 3   Comments: 0

Question Number 143766    Answers: 1   Comments: 1

x×y′′−y=x^ 3

$${x}×{y}''−{y}=\hat {{x}}\mathrm{3} \\ $$

Question Number 143765    Answers: 1   Comments: 0

∫∫x+2dx

$$\int\int{x}+\mathrm{2}{dx} \\ $$

Question Number 143764    Answers: 1   Comments: 0

can anyone tell me,how can I bring everything in this app to the new phone. And after bringing it to the new phone, I will be able to edit everything again.

$${can}\:{anyone}\:{tell}\:{me},{how}\:{can}\:{I} \\ $$$${bring}\:{everything}\:{in}\:{this}\:{app}\:{to} \\ $$$${the}\:{new}\:{phone}. \\ $$$${And}\:{after}\:{bringing}\:{it}\:{to}\:{the}\:{new} \\ $$$${phone},\:{I}\:{will}\:{be}\:{able}\:{to}\:{edit}\:{everything} \\ $$$${again}. \\ $$

Question Number 143763    Answers: 0   Comments: 0

$$ \: \: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \: \: \: \: \\ $$$$ \: \: \\ $$

Question Number 143758    Answers: 0   Comments: 1

Question Number 143755    Answers: 1   Comments: 0

Study the convergence with respect to α and β the improper integral below; ∫_0 ^∞ (dx/(x^α (lnx)^β ))

$$\mathrm{Study}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to} \\ $$$$\alpha\:\mathrm{and}\:\beta\:\mathrm{the}\:\mathrm{improper}\:\mathrm{integral}\:\mathrm{below}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{\alpha} \left(\mathrm{lnx}\right)^{\beta} } \\ $$

Question Number 143751    Answers: 1   Comments: 0

Question Number 143740    Answers: 1   Comments: 0

Prove that lim_(n→+∞) 2n−(2n+1)ln(n)+Σ_(p=0) ^n ln(1+p^2 )= ln(e^π −e^(−π) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}2n}−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{n}\right)+\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\mathrm{p}^{\mathrm{2}} \right)=\:\mathrm{ln}\left({e}^{\pi} −{e}^{−\pi} \right) \\ $$

Question Number 143735    Answers: 1   Comments: 0

.....Calculus..... Ω:= ∫_(−∞) ^( ∞) (dx/(x^( 2) e^(a/x^2 ) )) =? (a > 0 )

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{Calculus}..... \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\:\int_{−\infty} ^{\:\infty} \frac{{dx}}{{x}^{\:\mathrm{2}} \:{e}^{\frac{{a}}{{x}^{\mathrm{2}} }} }\:=?\:\:\left({a}\:>\:\mathrm{0}\:\right) \\ $$

  Pg 745      Pg 746      Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752      Pg 753      Pg 754   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com