Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 75

Question Number 208900    Answers: 0   Comments: 0

Does anyone know of an intuition behind the integral form of the remainder in Taylor′s theorem?

$${Does}\:{anyone}\:{know}\:{of}\:{an}\:{intuition} \\ $$$${behind}\:{the}\:{integral}\:{form}\:{of}\:{the} \\ $$$${remainder}\:{in}\:{Taylor}'{s}\:{theorem}? \\ $$

Question Number 208915    Answers: 1   Comments: 0

Question Number 208896    Answers: 2   Comments: 0

Question Number 208891    Answers: 0   Comments: 0

κ

$$\:\:\:\underline{\kappa} \\ $$

Question Number 208892    Answers: 2   Comments: 1

Find: (√(−16)) ∙ (√(−9)) = ?

$$\mathrm{Find}: \\ $$$$\sqrt{−\mathrm{16}}\:\:\centerdot\:\:\sqrt{−\mathrm{9}}\:\:=\:\:? \\ $$

Question Number 208880    Answers: 1   Comments: 0

Question Number 208876    Answers: 2   Comments: 7

The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛 𝙰.2044 𝙱.2032 𝙲.2040 𝙳.2036

The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛 𝙰.2044 𝙱.2032 𝙲.2040 𝙳.2036

Question Number 208872    Answers: 2   Comments: 0

Find the side of a triangle if the distances from an arbitrary point inside a regular triangle to its vertices are m, n and k. Help please

$$ \\ $$$$\:\:\:{Find}\:{the}\:{side}\:{of}\:{a}\:{triangle}\:{if}\:{the}\:{distances} \\ $$$$\:\:\:{from}\:{an}\:{arbitrary}\:{point}\:{inside}\:{a}\:{regular}\:{triangle}\: \\ $$$$\:\:\:{to}\:{its}\:{vertices}\:{are}\:{m},\:{n}\:{and}\:{k}. \\ $$$$\:\:{Help}\:{please} \\ $$

Question Number 208871    Answers: 3   Comments: 0

L=∫_0 ^1 (√((4−3x)/(4+5x)))dx

$${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$

Question Number 208866    Answers: 1   Comments: 1

Question Number 208861    Answers: 0   Comments: 2

Question Number 208855    Answers: 1   Comments: 0

Question Number 208852    Answers: 1   Comments: 0

Question Number 208849    Answers: 0   Comments: 0

Question Number 208842    Answers: 1   Comments: 1

does the rule of odd and even functions can be applied with improper integration? I=∫_(−∞) ^∞ xe^(−x^2 ) dx while f(x)= xe^(−x^2 ) is odd then I =0

$${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\ $$

Question Number 208836    Answers: 2   Comments: 0

Question Number 208828    Answers: 3   Comments: 0

Question Number 208823    Answers: 2   Comments: 0

If a+b+c=15, then find the smallest value of the expression (√(a^2 +1))+(√(b^2 +9))+(√(c^2 +16)). Help please

$$ \\ $$$$\:\:\:{If}\:{a}+{b}+{c}=\mathrm{15},\:{then}\:{find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:{of}\:{the}\:{expression}\:\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{b}^{\mathrm{2}} +\mathrm{9}}+\sqrt{{c}^{\mathrm{2}} +\mathrm{16}}. \\ $$$$\:\:\:\:\:{Help}\:{please} \\ $$

Question Number 208819    Answers: 2   Comments: 0

Question Number 208816    Answers: 0   Comments: 1

Question Number 208814    Answers: 1   Comments: 2

Question Number 208809    Answers: 0   Comments: 1

Question Number 208812    Answers: 1   Comments: 0

Question Number 208805    Answers: 0   Comments: 3

Integrate: (xdz − zdx) − a^2 (2xzdz − z^2 dx) + 2x^3 = 0

$$\mathrm{Integrate}: \\ $$$$\left(\mathrm{xdz}\:−\:\mathrm{zdx}\right)\:−\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{2xzdz}\:−\:\mathrm{z}^{\mathrm{2}} \mathrm{dx}\right)\:+\:\mathrm{2x}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$

Question Number 208791    Answers: 0   Comments: 1

If ∫ (dx/(x^3 (1 + x^6 )^(2/3) )) = xf(x).(1 + x^6 )^(1/3) + C where C is constant of integration then find f(x).

$$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$

Question Number 208789    Answers: 0   Comments: 3

Why is surface tension formula divided by 2L that is, surface tension = (F/(2L)) why divided by 2L. Where did the 2 come from? Example. Calculate the force required to lift a needle 4cm long off the surface of water, if surface tension of water is 7.3 × 10^(−4) Nm^(− 1) Why is the formula surface tension = (F/(2L)) why not surface tension = (F/L)

$$\mathrm{Why}\:\mathrm{is}\:\mathrm{surface}\:\mathrm{tension}\:\mathrm{formula}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{2L} \\ $$$$\mathrm{that}\:\mathrm{is},\:\:\:\:\mathrm{surface}\:\mathrm{tension}\:\:=\:\:\frac{\mathrm{F}}{\mathrm{2L}} \\ $$$$\mathrm{why}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{2L}. \\ $$$$\mathrm{Where}\:\mathrm{did}\:\mathrm{the}\:\mathrm{2}\:\mathrm{come}\:\mathrm{from}? \\ $$$$ \\ $$$$\mathrm{Example}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{force}\:\mathrm{required}\:\mathrm{to}\:\mathrm{lift}\:\mathrm{a}\:\mathrm{needle} \\ $$$$\mathrm{4cm}\:\mathrm{long}\:\mathrm{off}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{water},\:\mathrm{if}\:\mathrm{surface} \\ $$$$\mathrm{tension}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\:\mathrm{7}.\mathrm{3}\:×\:\mathrm{10}^{−\mathrm{4}} \mathrm{Nm}^{−\:\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{Why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{formula}\:\:\:\mathrm{surface}\:\mathrm{tension}\:\:=\:\:\frac{\mathrm{F}}{\mathrm{2L}} \\ $$$$\mathrm{why}\:\mathrm{not}\:\:\:\:\:\:\mathrm{surface}\:\mathrm{tension}\:\:=\:\:\frac{\mathrm{F}}{\mathrm{L}} \\ $$

  Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com