Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 749
Question Number 145524 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{below} \\ $$$$\left(\mathrm{i}\right)\:{z}\:=\:\mathrm{1}+{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$$$\left(\mathrm{ii}\right)\:{z}\:=\:\mathrm{1}\:−{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$
Question Number 143446 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'=\mathrm{y}−\mathrm{xy}^{\mathrm{3}} \mathrm{e}^{−\mathrm{2x}} \\ $$
Question Number 143443 Answers: 1 Comments: 1
Question Number 143545 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{6}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 143439 Answers: 2 Comments: 0
$$\mathrm{sinx}+\mathrm{sin2x}+\mathrm{sin3x}+.....+\mathrm{sinkx}=\mathrm{sin}\frac{\mathrm{kx}}{\mathrm{2}}×\frac{\mathrm{sin}\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\mathrm{x}}{\mathrm{sin}\frac{\mathrm{x}}{\mathrm{2}}} \\ $$$$\mathrm{prove} \\ $$
Question Number 143438 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\boldsymbol{{x}}} =\boldsymbol{{log}}_{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{{x}} \\ $$$$\boldsymbol{{find}}\:\:\:\boldsymbol{{x}} \\ $$
Question Number 143435 Answers: 0 Comments: 5
Question Number 143436 Answers: 0 Comments: 0
$${Find}\:{matrix}\:{rank}=? \\ $$$$\begin{pmatrix}{\mathrm{47}}&{−\mathrm{67}}&{\mathrm{35}}&{\mathrm{201}}&{\mathrm{155}}\\{\mathrm{26}}&{\mathrm{98}}&{\mathrm{23}}&{−\mathrm{294}}&{\mathrm{86}}\\{\mathrm{16}}&{−\mathrm{428}}&{\mathrm{1}}&{\mathrm{1284}}&{\mathrm{53}}\end{pmatrix} \\ $$
Question Number 143431 Answers: 0 Comments: 0
Question Number 143429 Answers: 1 Comments: 0
$$\:\: \\ $$$$\:\:\:\:\:\:\:.......\:{nice}\:.....{integral}....... \\ $$$$\:\:\:\:{Evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\xi\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:=? \\ $$
Question Number 143428 Answers: 1 Comments: 0
$$\:\:\:\:\: \\ $$$$...{Advanced}\:......{Mathematics}... \\ $$$$\:\:\:\:\:{Evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\::=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left(\pi{n}\right)}{{n}^{\mathrm{3}} }\:=? \\ $$
Question Number 143427 Answers: 1 Comments: 0
$${if}\:{f}\left({x}\right)\:{is}\:{polynomial}\:{satisfying} \\ $$$${f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)−\mathrm{2}{f}\left({x}\right)+\mathrm{2}{f}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{5} \\ $$$${and}\:{f}\left(\mathrm{2}\right)=\mathrm{14}\:{then}\:{f}\left(\mathrm{3}\right)=? \\ $$
Question Number 143418 Answers: 1 Comments: 0
Question Number 143414 Answers: 1 Comments: 0
$${Evaluate}\: \\ $$$$\lfloor\frac{\left\{\underset{{i}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}\:{tan}^{\mathrm{2}} \left(\frac{{i}\pi}{\mathrm{2021}}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\underset{{i}=\mathrm{1}} {\overset{\mathrm{1010}} {\prod}}\:{tan}\:\left(\frac{{i}\pi}{\mathrm{2021}}\right)}\rfloor\:\:\:\:{wherw}\lfloor\centerdot\rfloor\:{denotes}\:{GIF} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 143410 Answers: 2 Comments: 4
$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that}... \\ $$$$\left(\frac{{x}}{{z}}\right)^{\mathrm{2}} \boldsymbol{{e}}^{\left(\frac{{z}}{{x}}\right)^{\mathrm{2}} } +\:\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} \boldsymbol{{e}}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } +\:\left(\frac{{z}}{{y}}\right)^{\mathrm{2}} \:\boldsymbol{{e}}^{\left(\frac{{y}}{{z}}\right)^{\mathrm{2}} } \geqslant\:\mathrm{3}\boldsymbol{{e}} \\ $$
Question Number 143399 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{dx}}{\left(\mathrm{1}−\mathrm{ksinx}\right)^{\mathrm{2}} } \\ $$
Question Number 143393 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{f}\left({r}\right)=\left({r}+\mathrm{1}\right)!\:\centerdot\:{r},\:\mathrm{show}\:\mathrm{that} \\ $$$${f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)={r}!\left({r}^{\mathrm{2}} +\mathrm{1}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{2}!\:\centerdot\:\mathrm{5}+\mathrm{3}!\:\centerdot\:\mathrm{10}+\mathrm{4}!\:\centerdot\:\mathrm{17}+......{n}!\left({n}^{\mathrm{2}} +\mathrm{1}\right)=\left({n}+\mathrm{1}\right)!\:\centerdot\:\left({n}−\mathrm{2}\right) \\ $$
Question Number 143391 Answers: 1 Comments: 0
$${lim}_{{n}\rightarrow\infty} \left(\mathrm{1}\:−\:\frac{{n}}{{n}−\mathrm{2}}\right)^{\mathrm{4}{n}} =\:?? \\ $$$${chiaha}\:{daniel} \\ $$
Question Number 143390 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\left(\frac{\mathrm{tan}\:\alpha}{\mathrm{sin}\:\theta}−\frac{\mathrm{tan}\:\beta}{\mathrm{tan}\:\theta}\right)^{\mathrm{2}} =\mathrm{tan}^{\mathrm{2}} \alpha−\mathrm{tan}^{\mathrm{2}} \beta, \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{cos}\:\theta=\frac{\mathrm{tan}\:\beta}{\mathrm{tan}\:\alpha\:} \\ $$
Question Number 143384 Answers: 2 Comments: 0
$${proof}:\:\:{tg}^{\mathrm{2}} \left(\mathrm{36}°\right)\:\centerdot\:{tg}^{\mathrm{2}} \left(\mathrm{72}°\right)\:=\:\mathrm{5} \\ $$
Question Number 143383 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{\sqrt{{x}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}}{dx} \\ $$
Question Number 143382 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {log}\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 143381 Answers: 2 Comments: 0
$${let}\:{f}\left({x}\right)={arctan}\left(\sqrt{\mathrm{2}}{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right){and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){if}\:{f}\left({x}\right)=\Sigma{a}_{{n}} {x}^{{n}} \:\:{find}\:{the}\: \\ $$$${sequence}\:{a}_{{n}} \\ $$
Question Number 143380 Answers: 1 Comments: 0
$${developp}\:{at}\:{fourier}\:{serie} \\ $$$${f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{1}+\mathrm{2}{cosx}} \\ $$$${by}\:{use}\:{of}\:{two}\:{methods} \\ $$
Question Number 143372 Answers: 1 Comments: 1
Question Number 143370 Answers: 0 Comments: 0
$$\left(\mathrm{32}\right)^{\left({log}_{\mathrm{8}} {X}^{\mathrm{3}} \right)^{\mathrm{3}} } +\left(\mathrm{80}\right)^{\left({log}_{\mathrm{4}} {X}^{\mathrm{2}} \right)^{\mathrm{2}} } −\left(\mathrm{144}\right)^{\left({log}_{\mathrm{2}} {X}\right)} =\mathrm{18} \\ $$$${find}\:{X} \\ $$
Pg 744 Pg 745 Pg 746 Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752 Pg 753
Terms of Service
Privacy Policy
Contact: info@tinkutara.com