Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 749

Question Number 145524    Answers: 1   Comments: 0

What is the argument of the complex numbers below (i) z = 1+e^((π/6)i) (ii) z = 1 −e^((π/6)i)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{below} \\ $$$$\left(\mathrm{i}\right)\:{z}\:=\:\mathrm{1}+{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$$$\left(\mathrm{ii}\right)\:{z}\:=\:\mathrm{1}\:−{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$

Question Number 143446    Answers: 1   Comments: 0

find general solution of differential equation y′=y−xy^3 e^(−2x)

$$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'=\mathrm{y}−\mathrm{xy}^{\mathrm{3}} \mathrm{e}^{−\mathrm{2x}} \\ $$

Question Number 143443    Answers: 1   Comments: 1

Question Number 143545    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((logx)/(x^6 +1))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{6}} \:+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 143439    Answers: 2   Comments: 0

sinx+sin2x+sin3x+.....+sinkx=sin((kx)/2)×((sin((k+1)/2)x)/(sin(x/2))) prove

$$\mathrm{sinx}+\mathrm{sin2x}+\mathrm{sin3x}+.....+\mathrm{sinkx}=\mathrm{sin}\frac{\mathrm{kx}}{\mathrm{2}}×\frac{\mathrm{sin}\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\mathrm{x}}{\mathrm{sin}\frac{\mathrm{x}}{\mathrm{2}}} \\ $$$$\mathrm{prove} \\ $$

Question Number 143438    Answers: 1   Comments: 0

((1/2))^x =log_(1/2) x find x

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\boldsymbol{{x}}} =\boldsymbol{{log}}_{\frac{\mathrm{1}}{\mathrm{2}}} \boldsymbol{{x}} \\ $$$$\boldsymbol{{find}}\:\:\:\boldsymbol{{x}} \\ $$

Question Number 143435    Answers: 0   Comments: 5

Question Number 143436    Answers: 0   Comments: 0

Find matrix rank=? (((47),(−67),(35),(201),(155)),((26),(98),(23),(−294),(86)),((16),(−428),1,(1284),(53)) )

$${Find}\:{matrix}\:{rank}=? \\ $$$$\begin{pmatrix}{\mathrm{47}}&{−\mathrm{67}}&{\mathrm{35}}&{\mathrm{201}}&{\mathrm{155}}\\{\mathrm{26}}&{\mathrm{98}}&{\mathrm{23}}&{−\mathrm{294}}&{\mathrm{86}}\\{\mathrm{16}}&{−\mathrm{428}}&{\mathrm{1}}&{\mathrm{1284}}&{\mathrm{53}}\end{pmatrix} \\ $$

Question Number 143431    Answers: 0   Comments: 0

Question Number 143429    Answers: 1   Comments: 0

....... nice .....integral....... Evaluate :: ξ := ∫_0 ^( 1) ((ln(1−t))/(1+t^2 )) dt =?

$$\:\: \\ $$$$\:\:\:\:\:\:\:.......\:{nice}\:.....{integral}....... \\ $$$$\:\:\:\:{Evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\xi\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:=? \\ $$

Question Number 143428    Answers: 1   Comments: 0

...Advanced ......Mathematics... Evaluate:: 𝛗 :=Σ_(n=1) ^∞ ((coth(πn))/n^3 ) =?

$$\:\:\:\:\: \\ $$$$...{Advanced}\:......{Mathematics}... \\ $$$$\:\:\:\:\:{Evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\::=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left(\pi{n}\right)}{{n}^{\mathrm{3}} }\:=? \\ $$

Question Number 143427    Answers: 1   Comments: 0

if f(x) is polynomial satisfying f(x)f((1/x))−2f(x)+2f((1/x))=5 and f(2)=14 then f(3)=?

$${if}\:{f}\left({x}\right)\:{is}\:{polynomial}\:{satisfying} \\ $$$${f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)−\mathrm{2}{f}\left({x}\right)+\mathrm{2}{f}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{5} \\ $$$${and}\:{f}\left(\mathrm{2}\right)=\mathrm{14}\:{then}\:{f}\left(\mathrm{3}\right)=? \\ $$

Question Number 143418    Answers: 1   Comments: 0

Question Number 143414    Answers: 1   Comments: 0

Evaluate ⌊(({Σ_(i=1) ^(1010) tan^2 (((iπ)/(2021)))}^(1/2) )/(Π_(i=1) ^(1010) tan (((iπ)/(2021)))))⌋ wherw⌊∙⌋ denotes GIF

$${Evaluate}\: \\ $$$$\lfloor\frac{\left\{\underset{{i}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}\:{tan}^{\mathrm{2}} \left(\frac{{i}\pi}{\mathrm{2021}}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\underset{{i}=\mathrm{1}} {\overset{\mathrm{1010}} {\prod}}\:{tan}\:\left(\frac{{i}\pi}{\mathrm{2021}}\right)}\rfloor\:\:\:\:{wherw}\lfloor\centerdot\rfloor\:{denotes}\:{GIF} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 143410    Answers: 2   Comments: 4

if x;y;z>0 prove that... ((x/z))^2 e^(((z/x))^2 ) + ((y/x))^2 e^(((x/y))^2 ) + ((z/y))^2 e^(((y/z))^2 ) ≥ 3e

$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that}... \\ $$$$\left(\frac{{x}}{{z}}\right)^{\mathrm{2}} \boldsymbol{{e}}^{\left(\frac{{z}}{{x}}\right)^{\mathrm{2}} } +\:\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} \boldsymbol{{e}}^{\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} } +\:\left(\frac{{z}}{{y}}\right)^{\mathrm{2}} \:\boldsymbol{{e}}^{\left(\frac{{y}}{{z}}\right)^{\mathrm{2}} } \geqslant\:\mathrm{3}\boldsymbol{{e}} \\ $$

Question Number 143399    Answers: 2   Comments: 0

∫_0 ^(2π) (dx/((1−ksinx)^2 ))

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{dx}}{\left(\mathrm{1}−\mathrm{ksinx}\right)^{\mathrm{2}} } \\ $$

Question Number 143393    Answers: 1   Comments: 0

Given that f(r)=(r+1)! ∙ r, show that f(r)−f(r−1)=r!(r^2 +1). Hence or otherwise, show that 2! ∙ 5+3! ∙ 10+4! ∙ 17+......n!(n^2 +1)=(n+1)! ∙ (n−2)

$$\mathrm{Given}\:\mathrm{that}\:{f}\left({r}\right)=\left({r}+\mathrm{1}\right)!\:\centerdot\:{r},\:\mathrm{show}\:\mathrm{that} \\ $$$${f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)={r}!\left({r}^{\mathrm{2}} +\mathrm{1}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{2}!\:\centerdot\:\mathrm{5}+\mathrm{3}!\:\centerdot\:\mathrm{10}+\mathrm{4}!\:\centerdot\:\mathrm{17}+......{n}!\left({n}^{\mathrm{2}} +\mathrm{1}\right)=\left({n}+\mathrm{1}\right)!\:\centerdot\:\left({n}−\mathrm{2}\right) \\ $$

Question Number 143391    Answers: 1   Comments: 0

lim_(n→∞) (1 − (n/(n−2)))^(4n) = ?? chiaha daniel

$${lim}_{{n}\rightarrow\infty} \left(\mathrm{1}\:−\:\frac{{n}}{{n}−\mathrm{2}}\right)^{\mathrm{4}{n}} =\:?? \\ $$$${chiaha}\:{daniel} \\ $$

Question Number 143390    Answers: 1   Comments: 0

Given that (((tan α)/(sin θ))−((tan β)/(tan θ)))^2 =tan^2 α−tan^2 β, prove that cos θ=((tan β)/(tan α ))

$$\mathrm{Given}\:\mathrm{that}\:\left(\frac{\mathrm{tan}\:\alpha}{\mathrm{sin}\:\theta}−\frac{\mathrm{tan}\:\beta}{\mathrm{tan}\:\theta}\right)^{\mathrm{2}} =\mathrm{tan}^{\mathrm{2}} \alpha−\mathrm{tan}^{\mathrm{2}} \beta, \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{cos}\:\theta=\frac{\mathrm{tan}\:\beta}{\mathrm{tan}\:\alpha\:} \\ $$

Question Number 143384    Answers: 2   Comments: 0

proof: tg^2 (36°) ∙ tg^2 (72°) = 5

$${proof}:\:\:{tg}^{\mathrm{2}} \left(\mathrm{36}°\right)\:\centerdot\:{tg}^{\mathrm{2}} \left(\mathrm{72}°\right)\:=\:\mathrm{5} \\ $$

Question Number 143383    Answers: 0   Comments: 0

calculate ∫_1 ^3 ((√x)/( (√(x+1))+(√(2x+3))))dx

$${calculate}\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{\sqrt{{x}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}}{dx} \\ $$

Question Number 143382    Answers: 0   Comments: 0

find ∫_0 ^∞ xe^(−x^2 ) log(1+2x^2 )dx

$${find}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {log}\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 143381    Answers: 2   Comments: 0

let f(x)=arctan((√2)x^2 ) 1) calculate f^((n)) (x)and f^((n)) (0) 2)if f(x)=Σa_n x^n find the sequence a_n

$${let}\:{f}\left({x}\right)={arctan}\left(\sqrt{\mathrm{2}}{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right){and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){if}\:{f}\left({x}\right)=\Sigma{a}_{{n}} {x}^{{n}} \:\:{find}\:{the}\: \\ $$$${sequence}\:{a}_{{n}} \\ $$

Question Number 143380    Answers: 1   Comments: 0

developp at fourier serie f(x)=(3/(1+2cosx)) by use of two methods

$${developp}\:{at}\:{fourier}\:{serie} \\ $$$${f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{1}+\mathrm{2}{cosx}} \\ $$$${by}\:{use}\:{of}\:{two}\:{methods} \\ $$

Question Number 143372    Answers: 1   Comments: 1

Question Number 143370    Answers: 0   Comments: 0

(32)^((log_8 X^3 )^3 ) +(80)^((log_4 X^2 )^2 ) −(144)^((log_2 X)) =18 find X

$$\left(\mathrm{32}\right)^{\left({log}_{\mathrm{8}} {X}^{\mathrm{3}} \right)^{\mathrm{3}} } +\left(\mathrm{80}\right)^{\left({log}_{\mathrm{4}} {X}^{\mathrm{2}} \right)^{\mathrm{2}} } −\left(\mathrm{144}\right)^{\left({log}_{\mathrm{2}} {X}\right)} =\mathrm{18} \\ $$$${find}\:{X} \\ $$

  Pg 744      Pg 745      Pg 746      Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752      Pg 753   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com