Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 748

Question Number 143508    Answers: 3   Comments: 0

..........Calculus........ i: 𝛗_1 :=∫_0 ^( 1) ((ln^2 (1βˆ’x).ln(x))/x)dx ii: 𝛗_2 := ∫_0 ^( 1) ((ln^2 (x).ln(1βˆ’x))/x) dx iii : 𝛗_3 :=∫_0 ^( 1) ((ln^2 (x).ln(1+x))/x)dx

$$ \\ $$$$\:\:\:\:\:\:\:\:..........{Calculus}........ \\ $$$$\:\:\:\:{i}:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} :=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}βˆ’{x}\right).{ln}\left({x}\right)}{{x}}{dx} \\ $$$$\:\:\:{ii}:\:\:\:\boldsymbol{\phi}_{\mathrm{2}} :=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right).{ln}\left(\mathrm{1}βˆ’{x}\right)}{{x}}\:{dx} \\ $$$$\:\:{iii}\::\:\boldsymbol{\phi}_{\mathrm{3}} \::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right).{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$

Question Number 143507    Answers: 1   Comments: 0

10(√(20))+13(√(45))

$$\mathrm{10}\sqrt{\mathrm{20}}+\mathrm{13}\sqrt{\mathrm{45}} \\ $$

Question Number 143506    Answers: 1   Comments: 0

∫_1 ^∞ (1/(e^(βˆ’x) +e^x )) dx=?

$$\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{{e}^{βˆ’{x}} +{e}^{{x}} }\:{dx}=? \\ $$$$ \\ $$

Question Number 143505    Answers: 1   Comments: 1

Question Number 143501    Answers: 0   Comments: 0

Question Number 143502    Answers: 0   Comments: 0

Question Number 143499    Answers: 1   Comments: 1

Question Number 143514    Answers: 0   Comments: 1

Question Number 143495    Answers: 1   Comments: 0

On definit la fonction L(f(t))(p)=∫_0 ^(+∞) f(t)e^(βˆ’pt) dt Calculer L(((t^n /(n!))))(p)

$${On}\:{definit}\:{la}\:{fonction}\: \\ $$$$\mathscr{L}\left({f}\left({t}\right)\right)\left({p}\right)=\int_{\mathrm{0}} ^{+\infty} {f}\left({t}\right){e}^{βˆ’{pt}} {dt} \\ $$$${Calculer}\:\mathscr{L}\left(\left(\frac{{t}^{{n}} }{{n}!}\right)\right)\left({p}\right) \\ $$

Question Number 143493    Answers: 0   Comments: 1

Question Number 143491    Answers: 0   Comments: 1

Find lim_(nβ†’+∝) (u_n ),If { ((u_0 =1,n=1,2,3,.....)),((u_n = ((2018)/(2019))u_(nβˆ’1) + (1/((u_(nβˆ’1) )^(2018) )))) :}

$$\mathrm{Find}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\mathrm{u}_{\mathrm{n}} \right),\mathrm{If}\:\begin{cases}{\mathrm{u}_{\mathrm{0}} =\mathrm{1},\mathrm{n}=\mathrm{1},\mathrm{2},\mathrm{3},.....}\\{\mathrm{u}_{\mathrm{n}} =\:\frac{\mathrm{2018}}{\mathrm{2019}}\mathrm{u}_{\mathrm{n}βˆ’\mathrm{1}} +\:\frac{\mathrm{1}}{\left(\mathrm{u}_{\mathrm{n}βˆ’\mathrm{1}} \right)^{\mathrm{2018}} }}\end{cases} \\ $$

Question Number 143488    Answers: 1   Comments: 0

let f(x)=(1/(2+sinx)) developp f at fourier serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}+\mathrm{sinx}} \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$

Question Number 143487    Answers: 0   Comments: 0

find ∫_0 ^1 ((log(1+t^2 ))/(1+t))dt

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$

Question Number 143481    Answers: 1   Comments: 3

1βˆ’Montrer par recurrence que la transformee deLaplace suivante L(f^n (t))(p)=p^n L(f(t)(p)βˆ’p^(nβˆ’1) f(0^+ )βˆ’p^(nβˆ’2) f β€²(0^+ )βˆ’.......βˆ’f^((nβˆ’1)) (0^+ ) 2βˆ’Calaculer partir de L(sint)(p) la transforme L(((sint)/t))(p)

$$\mathrm{1}βˆ’{Montrer}\:{par}\:{recurrence}\:{que}\:{la}\:{transformee}\:{deLaplace}\:{suivante} \\ $$$$\mathscr{L}\left({f}^{{n}} \left({t}\right)\right)\left({p}\right)={p}^{{n}} \mathscr{L}\left({f}\left({t}\right)\left({p}\right)βˆ’{p}^{{n}βˆ’\mathrm{1}} {f}\left(\mathrm{0}^{+} \right)βˆ’{p}^{{n}βˆ’\mathrm{2}} {f}\:'\left(\mathrm{0}^{+} \right)βˆ’.......βˆ’{f}^{\left({n}βˆ’\mathrm{1}\right)} \left(\mathrm{0}^{+} \right)\right. \\ $$$$ \\ $$$$\mathrm{2}βˆ’{Calaculer}\:{partir}\:{de}\:\mathscr{L}\left({sint}\right)\left({p}\right)\:{la}\:{transforme}\:\mathscr{L}\left(\frac{{sint}}{{t}}\right)\left({p}\right) \\ $$

Question Number 143477    Answers: 0   Comments: 0

∫_0 ^1 e^(2arctg(t^2 )) dt

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{arctg}\left({t}^{\mathrm{2}} \right)} {dt} \\ $$

Question Number 143475    Answers: 1   Comments: 1

evaluate; ((((√7))^(log64) βˆ’(3)^(log_(24) 8) )/((log _2 8βˆ’log _(1/4) 64)((1/(log _4 ((1/(64))))))))

$$\:{evaluate}; \\ $$$$\frac{\left(\sqrt{\mathrm{7}}\right)^{\mathrm{log64}} βˆ’\left(\mathrm{3}\right)^{\mathrm{log}_{\mathrm{24}} \mathrm{8}} }{\left(\mathrm{log}\:_{\mathrm{2}} \mathrm{8}βˆ’\mathrm{log}\:_{\frac{\mathrm{1}}{\mathrm{4}}} \mathrm{64}\right)\left(\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{64}}\right)}\right)} \\ $$

Question Number 143463    Answers: 0   Comments: 0

Ξ _(k=1) ^n tan(((kΟ€)/(2n+1)))=(√(2n+1))

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{tan}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)=\sqrt{\mathrm{2}{n}+\mathrm{1}} \\ $$

Question Number 143462    Answers: 3   Comments: 0

lim_(xβ†’1) ((xβˆ’1)/(ln((x/(2βˆ’x))))) = ???

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\:\frac{{x}βˆ’\mathrm{1}}{{ln}\left(\frac{{x}}{\mathrm{2}βˆ’{x}}\right)}\:=\:??? \\ $$

Question Number 143461    Answers: 3   Comments: 0

Prove that : βˆ€n∈N^βˆ— a. Ξ£_(k=1) ^n C_n ^k (((βˆ’1)^k )/k) = Ξ£_(k=1) ^n (1/k) b. Ξ£_(k=1) ^n C_n ^k (((βˆ’1)^k )/(2k+1)) = (4^n /((2n+1)C_(2n) ^n ))

$$\mathrm{Prove}\:\mathrm{that}\::\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{a}.\:\:\:\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}{C}_{\mathrm{n}} ^{\mathrm{k}} \frac{\left(βˆ’\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}}\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\mathrm{b}.\:\:\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}{C}_{\mathrm{n}} ^{\mathrm{k}} \:\frac{\left(βˆ’\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{2k}+\mathrm{1}}\:=\:\frac{\mathrm{4}^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right){C}_{\mathrm{2n}} ^{\mathrm{n}} } \\ $$

Question Number 143474    Answers: 0   Comments: 0

for all positive integral., u_(n+1) =u_n (u_(nβˆ’1) ^2 βˆ’2)βˆ’u_n u_n =2 and u_1 =2(1/2) prove that : 3log_2 [u_n ]=2^n βˆ’1(βˆ’1)^n where [x] is the integral part of x

$${for}\:{all}\:{positive}\:{integral}., \\ $$$$\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} \left(\mathrm{u}_{\mathrm{n}βˆ’\mathrm{1}} ^{\mathrm{2}} βˆ’\mathrm{2}\right)βˆ’\mathrm{u}_{\mathrm{n}} \\ $$$$\:\mathrm{u}_{\mathrm{n}} =\mathrm{2}\:{and}\:\mathrm{u}_{\mathrm{1}} =\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${prove}\:{that}\::\:\mathrm{3log}_{\mathrm{2}} \left[\mathrm{u}_{\mathrm{n}} \right]=\mathrm{2}^{\mathrm{n}} βˆ’\mathrm{1}\left(βˆ’\mathrm{1}\right)^{\mathrm{n}} \\ $$$${where}\:\left[\mathrm{x}\right]\:{is}\:{the}\:{integral}\:{part}\:{of}\:\:\mathrm{x} \\ $$

Question Number 143453    Answers: 1   Comments: 0

Question Number 143454    Answers: 1   Comments: 0

........nice .......integral....... T :=∫_0 ^( ∞) ((arctan(x))/x^( ln(x) +1) )dx=^? ((Ο€(βˆšΟ€))/4)

$$ \\ $$$$\:\:\:........{nice}\:.......{integral}....... \\ $$$$\:\:\mathscr{T}\:\::=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}\right)}{{x}^{\:{ln}\left({x}\right)\:+\mathrm{1}} }{dx}\overset{?} {=}\frac{\pi\sqrt{\pi}}{\mathrm{4}} \\ $$$$ \\ $$

Question Number 143450    Answers: 2   Comments: 0

when x+y=((2Ο€)/3); xβ‰₯0 ;yβ‰₯0 the maximum and the minimum of sin x+sin y is ___

$${when}\:{x}+{y}=\frac{\mathrm{2}\pi}{\mathrm{3}};\:{x}\geqslant\mathrm{0}\:;{y}\geqslant\mathrm{0} \\ $$$${the}\:{maximum}\:{and}\:{the}\:{minimum} \\ $$$${of}\:\mathrm{sin}\:{x}+\mathrm{sin}\:{y}\:{is}\:\_\_\_\: \\ $$

Question Number 145524    Answers: 1   Comments: 0

What is the argument of the complex numbers below (i) z = 1+e^((Ο€/6)i) (ii) z = 1 βˆ’e^((Ο€/6)i)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{argument}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{below} \\ $$$$\left(\mathrm{i}\right)\:{z}\:=\:\mathrm{1}+{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$$$\left(\mathrm{ii}\right)\:{z}\:=\:\mathrm{1}\:βˆ’{e}^{\frac{\pi}{\mathrm{6}}{i}} \\ $$

Question Number 143446    Answers: 1   Comments: 0

find general solution of differential equation yβ€²=yβˆ’xy^3 e^(βˆ’2x)

$$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'=\mathrm{y}βˆ’\mathrm{xy}^{\mathrm{3}} \mathrm{e}^{βˆ’\mathrm{2x}} \\ $$

Question Number 143443    Answers: 1   Comments: 1

  Pg 743      Pg 744      Pg 745      Pg 746      Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com