Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 748

Question Number 144049    Answers: 1   Comments: 0

Given the equation 1000 = 2000(((1−(1+t)^(−n) )/t)) find the value of t.

$$\:\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{1000}\:=\:\mathrm{2000}\left(\frac{\mathrm{1}−\left(\mathrm{1}+{t}\right)^{−{n}} }{{t}}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{t}. \\ $$

Question Number 144199    Answers: 1   Comments: 0

Prove that 1+(1^2 /(6+(3^2 /(6+(5^2 /(6+(7^2 /(6+(9^2 /(6+...))))))))))=(2/(1+((1×2)/(1+((2×3)/(1+((3×4)/(1+((4×5)/(1+((5×6)/(1+...))))))))))))

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}+\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{9}^{\mathrm{2}} }{\mathrm{6}+...}}}}}=\frac{\mathrm{2}}{\mathrm{1}+\frac{\mathrm{1}×\mathrm{2}}{\mathrm{1}+\frac{\mathrm{2}×\mathrm{3}}{\mathrm{1}+\frac{\mathrm{3}×\mathrm{4}}{\mathrm{1}+\frac{\mathrm{4}×\mathrm{5}}{\mathrm{1}+\frac{\mathrm{5}×\mathrm{6}}{\mathrm{1}+...}}}}}} \\ $$

Question Number 144042    Answers: 3   Comments: 0

Question Number 144038    Answers: 0   Comments: 0

Question Number 144031    Answers: 1   Comments: 0

Question Number 144026    Answers: 1   Comments: 1

Question Number 144025    Answers: 1   Comments: 0

Between 12 p.m. today and 12 p.m. tomorrow, how many times do the hour hand and the minute hand on a clock form an angle of 120°?

$$\mathrm{Between}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}.\:\mathrm{today}\:\mathrm{and}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}. \\ $$$$\mathrm{tomorrow},\:\mathrm{how}\:\mathrm{many}\:\mathrm{times}\:\mathrm{do}\:\mathrm{the} \\ $$$$\mathrm{hour}\:\mathrm{hand}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minute}\:\mathrm{hand}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{clock}\:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{120}°? \\ $$

Question Number 144021    Answers: 0   Comments: 0

Question Number 144016    Answers: 0   Comments: 0

Question Number 144015    Answers: 0   Comments: 0

Question Number 144007    Answers: 0   Comments: 0

find maximum of x cosec x if 0<x<(Π/6)

$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}\:\mathrm{cosec}\:\mathrm{x} \\ $$$$\mathrm{if}\:\mathrm{0}<\mathrm{x}<\frac{\Pi}{\mathrm{6}} \\ $$

Question Number 144006    Answers: 0   Comments: 0

find minimum value of sec 2A+sec 2B where A+B is constant and A,B∈(o (Π/4))

$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sec}\:\mathrm{2A}+\mathrm{sec}\:\mathrm{2B} \\ $$$$\mathrm{where}\:\mathrm{A}+\mathrm{B}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{and} \\ $$$$\mathrm{A},\mathrm{B}\in\left(\mathrm{o}\:\frac{\Pi}{\mathrm{4}}\right) \\ $$

Question Number 144001    Answers: 2   Comments: 0

Question Number 144000    Answers: 1   Comments: 0

prove that ∀_m ∈N , a_k ,b_k ∈R cos^(2m) x =Σ_(k=1) ^m a_k cos 2kx cos^(2m−1) x=Σ_(k=1) ^m b_k cos (2k−1)x and find expr of a_k ,b_k in terms of k.

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$ \\ $$$$\forall_{{m}} \in\mathbb{N}\:,\:{a}_{{k}} ,{b}_{{k}} \in\mathbb{R} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}} {x}\:=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{k}} \mathrm{cos}\:\mathrm{2}{kx} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}−\mathrm{1}} {x}=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{b}_{{k}} \mathrm{cos}\:\left(\mathrm{2}{k}−\mathrm{1}\right){x} \\ $$$$ \\ $$$$\mathrm{and}\:\:\mathrm{find}\:\mathrm{expr}\:\:\mathrm{of}\:\:{a}_{{k}} \:,{b}_{{k}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{k}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 143997    Answers: 2   Comments: 0

The maximum value of y = (√((x−3)^2 +(x^2 −2)^2 ))−(√(x^2 +(x^2 −1)^2 )) is (A) (√(10)) (C) 4 (B) 2(√5) (D) 10

$$\:{The}\:{maximum}\:{value}\:{of}\: \\ $$$${y}\:=\:\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }−\sqrt{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${is}\:\left({A}\right)\:\sqrt{\mathrm{10}}\:\:\:\:\:\:\:\left({C}\right)\:\mathrm{4}\: \\ $$$$\:\:\:\:\:\:\left({B}\right)\:\mathrm{2}\sqrt{\mathrm{5}}\:\:\:\:\:\left({D}\right)\:\mathrm{10}\: \\ $$

Question Number 143995    Answers: 1   Comments: 0

lim_(x→π/4) ((π−4x)/( (√(1−(√(sin 2x)))))) =?

$$\:\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\pi−\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}}\:=? \\ $$

Question Number 143993    Answers: 1   Comments: 0

Question Number 143987    Answers: 1   Comments: 0

If f(x^2 −6x+6)+f(x^2 −4x+4)=2x ∀x∈R then f(−3)+f(9)−5f(1)=?

$${If}\:{f}\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}\right)+{f}\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)=\mathrm{2}{x} \\ $$$$\forall{x}\in{R}\:{th}\mathrm{e}{n}\:{f}\left(−\mathrm{3}\right)+{f}\left(\mathrm{9}\right)−\mathrm{5}{f}\left(\mathrm{1}\right)=? \\ $$

Question Number 143980    Answers: 1   Comments: 0

Question Number 143979    Answers: 1   Comments: 0

Question Number 143970    Answers: 1   Comments: 0

Given that ω is a complex number, ω^7 =1, ω≠1, find the value of ω^1 +ω^2 +ω^3 +ω^4 +ω^5 +ω^6 .

$$\mathrm{Given}\:\mathrm{that}\:\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}, \\ $$$$\omega^{\mathrm{7}} =\mathrm{1},\:\omega\neq\mathrm{1},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\omega^{\mathrm{1}} +\omega^{\mathrm{2}} +\omega^{\mathrm{3}} +\omega^{\mathrm{4}} +\omega^{\mathrm{5}} +\omega^{\mathrm{6}} . \\ $$

Question Number 143965    Answers: 1   Comments: 1

Question Number 143964    Answers: 1   Comments: 2

x_1 and x_2 are solutions of equality : cos (((πx+π)/6)) − sin (((πx−π)/6)) = (1/2) (√3) , 0 ≤ x ≤ 12 Find the value of x_1 + x_2 .

$${x}_{\mathrm{1}} \:{and}\:\:{x}_{\mathrm{2}} \:\:{are}\:\:{solutions}\:\:{of}\:\:{equality}\:: \\ $$$$\:\:\mathrm{cos}\:\left(\frac{\pi{x}+\pi}{\mathrm{6}}\right)\:−\:\mathrm{sin}\:\left(\frac{\pi{x}−\pi}{\mathrm{6}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\mathrm{3}}\:\:\:,\:\:\:\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{12} \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{x}_{\mathrm{1}} +\:{x}_{\mathrm{2}} \:. \\ $$

Question Number 143963    Answers: 1   Comments: 0

A=x^(ln(y/x)) .y^(ln(z/x)) .z^(ln(x/y)) =??

$$\mathrm{A}=\mathrm{x}^{\mathrm{ln}\frac{\mathrm{y}}{\mathrm{x}}} .\mathrm{y}^{\mathrm{ln}\frac{\mathrm{z}}{\mathrm{x}}} .\mathrm{z}^{\mathrm{ln}\frac{\mathrm{x}}{\mathrm{y}}} =?? \\ $$

Question Number 143962    Answers: 2   Comments: 0

∫_0 ^(π/2) ((2xsin^2 t)/(cos^2 t+x^2 sin^2 t))dt=.....???

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{xsin}^{\mathrm{2}} {t}}{{cos}^{\mathrm{2}} {t}+{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}}{dt}=.....??? \\ $$

Question Number 143961    Answers: 1   Comments: 0

I=∫_(π/6) ^(π/3) ((cos^6 x)/(1−3sin^2 xcos^2 x))dx=?

$$\mathrm{I}=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}^{\mathrm{6}} \mathrm{x}}{\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} \mathrm{xcos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}=? \\ $$

  Pg 743      Pg 744      Pg 745      Pg 746      Pg 747      Pg 748      Pg 749      Pg 750      Pg 751      Pg 752   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com