Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 748
Question Number 143822 Answers: 0 Comments: 0
$$\:{x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${let}\:\:{x}=\frac{{t}}{{s}} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +{as}^{\mathrm{2}} {t}^{\mathrm{2}} +{bs}^{\mathrm{3}} {t}+{cs}^{\mathrm{4}} =\mathrm{0} \\ $$$${let}\:{t}={p}+{h}\:\:\Rightarrow \\ $$$${p}^{\mathrm{4}} +\mathrm{4}{hp}^{\mathrm{3}} +\mathrm{6}{h}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{3}} {p}+{h}^{\mathrm{4}} \\ $$$$+{as}^{\mathrm{2}} \left({p}^{\mathrm{2}} +\mathrm{2}{hp}+{h}^{\mathrm{2}} \right) \\ $$$$+{bs}^{\mathrm{3}} \left({p}+{h}\right)+{cs}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${p}^{\mathrm{4}} +\mathrm{4}{hp}^{\mathrm{3}} +\left(\mathrm{6}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} \right){p}^{\mathrm{2}} \\ $$$$+\left(\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ahs}^{\mathrm{2}} +{bs}^{\mathrm{3}} \right){p} \\ $$$$+\left({h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \right)=\mathrm{0} \\ $$$${let}\:\:\left(\sqrt{\mathrm{2}}{p}^{\mathrm{2}} +{Ap}+{B}\right)^{\mathrm{2}} =\left({p}^{\mathrm{2}} +{mp}+{k}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}\sqrt{\mathrm{2}}{A}−\mathrm{2}{m}=\mathrm{4}{h} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}{B}+{A}^{\mathrm{2}} −{m}^{\mathrm{2}} −\mathrm{2}{k} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{6}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} \\ $$$$\mathrm{2}{AB}−\mathrm{2}{mk}=\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ah}+{bs}^{\mathrm{3}} \\ $$$${B}^{\mathrm{2}} −{k}^{\mathrm{2}} ={h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \\ $$$${let}\:\:{m}=\mathrm{0}\:\:\Rightarrow \\ $$$${A}=\sqrt{\mathrm{2}}{h} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}{B}=\mathrm{4}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} +\mathrm{2}{k} \\ $$$$\mathrm{4}{h}^{\mathrm{3}} +{ahs}^{\mathrm{2}} +\mathrm{2}{hk}=\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ah}+{bs}^{\mathrm{3}} \\ $$$$\Rightarrow\:\left({as}^{\mathrm{2}} +\mathrm{2}{k}−\mathrm{2}{a}\right){h}={bs}^{\mathrm{3}} \\ $$$$\left(\mathrm{4}{h}^{\mathrm{3}} +{as}^{\mathrm{2}} +\mathrm{2}{k}\right)^{\mathrm{2}} \\ $$$$\:\:−\mathrm{8}{k}^{\mathrm{2}} =\mathrm{8}\left({h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \right) \\ $$$${let}\:\:{k}={a} \\ $$$$\Rightarrow\:\:{ah}={bs} \\ $$$$\Rightarrow\:\left(\frac{\mathrm{4}{b}^{\mathrm{2}} {h}}{{a}^{\mathrm{2}} }+{a}+\frac{\mathrm{2}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)^{\mathrm{2}} −\frac{\mathrm{8}{b}^{\mathrm{4}} {h}^{\mathrm{4}} }{{a}^{\mathrm{2}} } \\ $$$$\:\:=\mathrm{8}\left(\frac{{b}^{\mathrm{4}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}}+{c}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{16}{b}^{\mathrm{4}} {h}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{a}^{\mathrm{6}} {h}^{\mathrm{4}} }{{b}^{\mathrm{4}} } \\ $$$$+\frac{\mathrm{8}{b}^{\mathrm{2}} {h}}{{a}}+\mathrm{32}{ah}^{\mathrm{3}} +\frac{\mathrm{4}{a}^{\mathrm{4}} {h}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\:\:−\frac{\mathrm{8}{b}^{\mathrm{4}} {h}^{\mathrm{4}} }{{a}^{\mathrm{2}} }=\lambda \\ $$$$\Rightarrow\:\left(\frac{\mathrm{4}{a}^{\mathrm{6}} }{{b}^{\mathrm{4}} }−\frac{\mathrm{8}{b}^{\mathrm{4}} }{{a}^{\mathrm{2}} }\right){h}^{\mathrm{4}} +\mathrm{32}{ah}^{\mathrm{3}} \\ $$$$\:\:\:+\left(\frac{\mathrm{16}{b}^{\mathrm{4}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{a}^{\mathrm{4}} }{{b}^{\mathrm{2}} }\right){h}^{\mathrm{2}} +\frac{\mathrm{8}{b}^{\mathrm{2}} {h}}{{a}}−\lambda=\mathrm{0} \\ $$$$... \\ $$
Question Number 144084 Answers: 1 Comments: 0
$${if}\:\:{a}+\frac{\mathrm{1}}{{a}}=−\mathrm{1} \\ $$$$\:{a}^{\mathrm{1234567891011}} +\frac{\mathrm{1}}{{a}^{\mathrm{1110987654321}} }=?? \\ $$$$ \\ $$
Question Number 144086 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{sin}\:\mathrm{t}\:+\:\mathrm{cos}\:\:\mathrm{t}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{cosec}\:\mathrm{t}+\mathrm{sec}\:\mathrm{t}\:=? \\ $$
Question Number 144085 Answers: 1 Comments: 1
Question Number 143814 Answers: 1 Comments: 0
$$\forall{a};{b};{c}\in\mathbb{R}\:,\:{find}\:{all}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:,\:{such}\:{that} \\ $$$${f}\left({a}\right){f}\left({bc}\right)+\mathrm{9}\leqslant{f}\left({ab}\right)+\mathrm{5}{f}\left({ac}\right) \\ $$
Question Number 143812 Answers: 1 Comments: 0
$$\:\mathrm{log}\:_{\mathrm{a}} \left(\mathrm{ax}\right).\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{ax}\right)=\mathrm{log}\:_{\mathrm{a}^{\mathrm{2}} } \left(\frac{\mathrm{1}}{\mathrm{a}}\right) \\ $$$$\:\mathrm{a}>\mathrm{0}\:,\:\mathrm{a}\neq\mathrm{1}\:.\:\mathrm{So}\:\mathrm{x}\:=\:? \\ $$
Question Number 143811 Answers: 1 Comments: 0
$$\:\begin{cases}{\mathrm{5}\left(\mathrm{log}\:_{\mathrm{y}} \left(\mathrm{x}\right)+\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{y}\right)\right)=\mathrm{26}}\\{\:\mathrm{xy}\:=\:\mathrm{64}}\end{cases}\mathrm{then} \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{xy}\:=? \\ $$
Question Number 143810 Answers: 2 Comments: 0
$$\:\:\:\:\int\mathrm{cos}\left(\mathrm{cosx}\right)\mathrm{dx}=? \\ $$
Question Number 144132 Answers: 2 Comments: 0
Question Number 143827 Answers: 1 Comments: 0
Question Number 143790 Answers: 0 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{3}} }{{n}^{\mathrm{3}} }\right) \\ $$
Question Number 143786 Answers: 1 Comments: 1
$$\int_{−\infty} ^{\:\infty} \frac{{e}^{{iax}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:{how}\:{can}\:{it}\:{solve}\:{this} \\ $$
Question Number 143776 Answers: 1 Comments: 0
$$\mathrm{x}×\mathrm{y}''−\mathrm{y}=\mathrm{x}^{\mathrm{3}} \\ $$
Question Number 143775 Answers: 1 Comments: 0
$$\mathrm{x}×\mathrm{y}''−\mathrm{y}=\hat {\mathrm{x}3} \\ $$
Question Number 143774 Answers: 1 Comments: 2
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{statement}\:{true}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\exists\:\mathrm{A}\in\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)\:\mid\:\mathrm{tr}\left(\mathrm{A}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{A}^{\mathrm{2}} +^{{t}} \mathrm{A}=\mathrm{I}_{\mathrm{3}} \\ $$
Question Number 143783 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{−\infty} ^{\:\infty} \frac{{log}\left(\mathrm{2}+{x}^{\:\mathrm{2}} \right)}{\mathrm{4}+{x}^{\:\mathrm{2}} }{dx}=? \\ $$$$ \\ $$
Question Number 143781 Answers: 3 Comments: 0
Question Number 143808 Answers: 2 Comments: 0
Question Number 143769 Answers: 3 Comments: 0
Question Number 143766 Answers: 1 Comments: 1
$${x}×{y}''−{y}=\hat {{x}}\mathrm{3} \\ $$
Question Number 143765 Answers: 1 Comments: 0
$$\int\int{x}+\mathrm{2}{dx} \\ $$
Question Number 143764 Answers: 1 Comments: 0
$${can}\:{anyone}\:{tell}\:{me},{how}\:{can}\:{I} \\ $$$${bring}\:{everything}\:{in}\:{this}\:{app}\:{to} \\ $$$${the}\:{new}\:{phone}. \\ $$$${And}\:{after}\:{bringing}\:{it}\:{to}\:{the}\:{new} \\ $$$${phone},\:{I}\:{will}\:{be}\:{able}\:{to}\:{edit}\:{everything} \\ $$$${again}. \\ $$
Question Number 143763 Answers: 0 Comments: 0
$$ \: \: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \: \: \: \: \\ $$$$ \: \: \\ $$
Question Number 143758 Answers: 0 Comments: 1
Question Number 143755 Answers: 1 Comments: 0
$$\mathrm{Study}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to} \\ $$$$\alpha\:\mathrm{and}\:\beta\:\mathrm{the}\:\mathrm{improper}\:\mathrm{integral}\:\mathrm{below}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{\alpha} \left(\mathrm{lnx}\right)^{\beta} } \\ $$
Question Number 143751 Answers: 1 Comments: 0
Pg 743 Pg 744 Pg 745 Pg 746 Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752
Terms of Service
Privacy Policy
Contact: info@tinkutara.com