Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 748
Question Number 135419 Answers: 1 Comments: 0
$$\sqrt{\mathrm{3}}\:\mathrm{tan}\:{x}.\mathrm{cot}\:{x}\:+\sqrt{\mathrm{3}}\:\mathrm{tan}\:{x}−\mathrm{cot}\:{x}−\mathrm{1}\:=\:\mathrm{0} \\ $$
Question Number 135418 Answers: 2 Comments: 0
$${Given}\:{x}+\frac{\mathrm{1}}{{x}}\:=\:\mathrm{5}\:{then}\:\frac{{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }}{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{1}}\:? \\ $$
Question Number 135415 Answers: 3 Comments: 1
Question Number 135413 Answers: 0 Comments: 1
Question Number 135405 Answers: 0 Comments: 2
Question Number 135402 Answers: 1 Comments: 0
Question Number 135401 Answers: 0 Comments: 0
$${find}\:{integrating}\:{factor}\:{or}\:{this}\:{diff}. \\ $$$${equ}^{{n}} \:{for}\:{which}\:{it}\:{become}\:{exact}\: \\ $$$$\left({x}^{\mathrm{2}} −{xy}−{y}^{\mathrm{2}} \right){dy}+{y}^{\mathrm{2}} {dx}=\mathrm{0} \\ $$
Question Number 135395 Answers: 6 Comments: 0
Question Number 135393 Answers: 1 Comments: 0
$${f}\:'\left({x}\right)=\frac{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)}{\mathrm{16}} \\ $$$${g}\left({x}\right)={f}\left({x}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${find}\:{g}'\left(\mathrm{2}\right) \\ $$
Question Number 135389 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\int_{−\infty} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow\infty} {e}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$
Question Number 135388 Answers: 1 Comments: 0
$${find}\:\:{lim}_{{n}\rightarrow\infty} \int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right){dx} \\ $$
Question Number 135385 Answers: 0 Comments: 0
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{3}}{\mathrm{4}}\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{3}}{\mathrm{4}}\frac{\mathrm{5}}{\mathrm{6}}\:\frac{\mathrm{1}}{{x}^{\mathrm{6}} }+....=? \\ $$
Question Number 135384 Answers: 3 Comments: 0
$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{2}+{x}^{\mathrm{3}} \right) \\ $$$${if}\:{f}\left({x}\right)=\Sigma{a}_{{n}} {x}^{{n}} \\ $$$${find}\:{a}_{{n}} \\ $$
Question Number 135382 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {ln}\left(\mathrm{1}−{x}^{\mathrm{4}} \right){dx}\:{with}\:{n} \\ $$$${integr}\:{natural} \\ $$
Question Number 135381 Answers: 0 Comments: 0
$${let}\:\Phi\left({x}\right)={ln}\left({sinx}\:−{cosx}\right) \\ $$$${developp}\:\Phi\:{at}\:{fourier}\:{serie} \\ $$
Question Number 135380 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 135378 Answers: 1 Comments: 0
$${compare}\:{without}\:{calculator} \\ $$$$\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{7}}}−\mathrm{1}\right)\:{and}\:\mathrm{7}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{5}}}−\mathrm{1}\right) \\ $$
Question Number 135377 Answers: 0 Comments: 0
$${solve}\:{x}^{\mathrm{2}} {y}^{''} +\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+\mathrm{3}{y}\:={e}^{−{x}} \\ $$
Question Number 135376 Answers: 0 Comments: 0
$${solve}\:{y}^{''\:} =\mathrm{1}+\frac{{y}}{{x}}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$
Question Number 135375 Answers: 0 Comments: 0
$${let}\:\varphi\left({x}\right)=\frac{{arctan}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$${developp}\:\varphi\:{at}\:{integr}\:{serie} \\ $$
Question Number 135373 Answers: 0 Comments: 0
$${determine}\:{the}\:{sequence}\:{u}_{{n}} \\ $$$${wich}\:{verify}\:{u}_{{n}} \:+{u}_{{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!} \\ $$
Question Number 135372 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{3}} } \\ $$
Question Number 135370 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{cosx}\:+\mathrm{2}{sinx}} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 135369 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{3}+{x}\right) \\ $$$$\left.\mathrm{1}\left.\right)\:{calculate}\:{f}^{\left({n}\right.} \right)\left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 135368 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 135366 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} }}{dx}=\frac{\pi}{\mathrm{3}} \\ $$$${Or} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{{k}}]{{kx}−\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)}{\mathrm{6}}{x}^{\mathrm{3}} −...}}{dx}=\frac{\pi}{{ksin}\left(\frac{\pi}{{k}}\right)} \\ $$
Pg 743 Pg 744 Pg 745 Pg 746 Pg 747 Pg 748 Pg 749 Pg 750 Pg 751 Pg 752
Terms of Service
Privacy Policy
Contact: info@tinkutara.com