1βMontrer par recurrence que la transformee deLaplace suivante
L(f^n (t))(p)=p^n L(f(t)(p)βp^(nβ1) f(0^+ )βp^(nβ2) f β²(0^+ )β.......βf^((nβ1)) (0^+ )
2βCalaculer partir de L(sint)(p) la transforme L(((sint)/t))(p)
for all positive integral.,
u_(n+1) =u_n (u_(nβ1) ^2 β2)βu_n
u_n =2 and u_1 =2(1/2)
prove that : 3log_2 [u_n ]=2^n β1(β1)^n
where [x] is the integral part of x