1−Montrer par recurrence que la transformee deLaplace suivante
L(f^n (t))(p)=p^n L(f(t)(p)−p^(n−1) f(0^+ )−p^(n−2) f ′(0^+ )−.......−f^((n−1)) (0^+ )
2−Calaculer partir de L(sint)(p) la transforme L(((sint)/t))(p)
for all positive integral.,
u_(n+1) =u_n (u_(n−1) ^2 −2)−u_n
u_n =2 and u_1 =2(1/2)
prove that : 3log_2 [u_n ]=2^n −1(−1)^n
where [x] is the integral part of x