Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 742

Question Number 144209    Answers: 1   Comments: 0

Question Number 144204    Answers: 1   Comments: 0

Find lim_(h→0) ((f(2h+2+h^2 )−f(2))/(f(h−h^2 +1)−f(1)))=? if given that { ((f ′(2)=6)),((f ′(1)=4)) :}

$$\mathrm{Find}\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{f}\left(\mathrm{2h}+\mathrm{2}+\mathrm{h}^{\mathrm{2}} \right)−\mathrm{f}\left(\mathrm{2}\right)}{\mathrm{f}\left(\mathrm{h}−\mathrm{h}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{f}\left(\mathrm{1}\right)}=? \\ $$$$\mathrm{if}\:\mathrm{given}\:\mathrm{that}\:\begin{cases}{\mathrm{f}\:'\left(\mathrm{2}\right)=\mathrm{6}}\\{\mathrm{f}\:'\left(\mathrm{1}\right)=\mathrm{4}}\end{cases} \\ $$

Question Number 144201    Answers: 1   Comments: 0

Find the equations of the circles passing through (−4,3) and touching the lines x+y=2 and x−y=2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\left(−\mathrm{4},\mathrm{3}\right)\:\mathrm{and}\:\mathrm{touching} \\ $$$$\mathrm{the}\:\mathrm{lines}\:\mathrm{x}+\mathrm{y}=\mathrm{2}\:\mathrm{and}\:\mathrm{x}−\mathrm{y}=\mathrm{2} \\ $$

Question Number 144200    Answers: 1   Comments: 0

Find, among all right circular cylinders of fixed volume V that one with smallest surface area (counting the areas of the faces at top and bottom )

$$\mathrm{Find},\:\mathrm{among}\:\mathrm{all}\:\mathrm{right}\:\mathrm{circular} \\ $$$$\mathrm{cylinders}\:\mathrm{of}\:\mathrm{fixed}\:\mathrm{volume}\:\mathrm{V}\: \\ $$$$\mathrm{that}\:\mathrm{one}\:\mathrm{with}\:\mathrm{smallest}\:\mathrm{surface}\:\mathrm{area} \\ $$$$\left(\mathrm{counting}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{faces}\:\right. \\ $$$$\left.\mathrm{at}\:\mathrm{top}\:\mathrm{and}\:\mathrm{bottom}\:\right) \\ $$

Question Number 144196    Answers: 0   Comments: 0

Let a,b,c>0 and a+b+c=3.Prove that (1+a^2 )(1+b^2 )(1+c^2 )≤(1+(1/( ((abc))^(1/3) )))^3

$$\mathrm{Let}\:\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0}\:\mathrm{and}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}.\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{b}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{c}^{\mathrm{2}} \right)\leqslant\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{abc}}}\right)^{\mathrm{3}} \\ $$

Question Number 144190    Answers: 1   Comments: 0

Σ_(n=1) ^∞ ((5n)/(n^2 + 3)) = ?

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{5}{n}}{{n}^{\mathrm{2}} \:+\:\mathrm{3}}\:=\:? \\ $$

Question Number 144186    Answers: 2   Comments: 0

Estimate ∫_0 ^(0.5) (√(1+x^4 )) dx with an error 0.0001

$${Estimate}\:\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx} \\ $$$${with}\:{an}\:{error}\:\mathrm{0}.\mathrm{0001} \\ $$

Question Number 144187    Answers: 1   Comments: 0

∫_0 ^(+∞) (u^2 /(u^8 +2u^4 +1))du

$$\int_{\mathrm{0}} ^{+\infty} \frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{8}} +\mathrm{2}{u}^{\mathrm{4}} +\mathrm{1}}{du} \\ $$

Question Number 144180    Answers: 2   Comments: 0

Prove that ∫^( +∞) _0 ((sh(𝛂t))/(sh(t)))dt = (𝛑/2)tan(((𝛑𝛂)/2))

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{0}} {\int}^{\:+\infty} \:\frac{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\alpha\mathrm{t}}\right)}{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\mathrm{t}}\right)}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi\alpha}}{\mathrm{2}}\right) \\ $$

Question Number 144177    Answers: 1   Comments: 0

Question Number 144174    Answers: 1   Comments: 1

∫_0 ^π (sinx)^(2n) dx=....? ∀n∈N

$$\int_{\mathrm{0}} ^{\pi} \left({sinx}\right)^{\mathrm{2}{n}} {dx}=....?\:\:\:\forall{n}\in\mathbb{N} \\ $$

Question Number 144170    Answers: 2   Comments: 0

Question Number 144169    Answers: 1   Comments: 1

please find the value of sin ((2Π)/7)+sin ((4Π)/7)+sin ((8Π)/7)

$$\mathrm{please}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{sin}\:\frac{\mathrm{2}\Pi}{\mathrm{7}}+\mathrm{sin}\:\frac{\mathrm{4}\Pi}{\mathrm{7}}+\mathrm{sin}\:\frac{\mathrm{8}\Pi}{\mathrm{7}} \\ $$

Question Number 144168    Answers: 1   Comments: 0

Question Number 144166    Answers: 1   Comments: 0

Given p^→ =(√2) i^ +2(√3) j^ + (√3) k^ & q^→ =a i^ +j^ +2k^ . If proj_q^→ p^→ = ((2(√2))/9) q^→ then ∣q^→ ∣ =?

$$\mathrm{Given}\:\overset{\rightarrow} {\mathrm{p}}=\sqrt{\mathrm{2}}\:\hat {\mathrm{i}}+\mathrm{2}\sqrt{\mathrm{3}}\:\hat {\mathrm{j}}+\:\sqrt{\mathrm{3}}\:\hat {\mathrm{k}}\:\&\: \\ $$$$\:\overset{\rightarrow} {\mathrm{q}}=\mathrm{a}\:\hat {\mathrm{i}}+\hat {\mathrm{j}}\:+\mathrm{2}\hat {\mathrm{k}}\:.\:\mathrm{If}\:\mathrm{proj}_{\overset{\rightarrow} {\mathrm{q}}} \:\overset{\rightarrow} {\mathrm{p}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}}\:\overset{\rightarrow} {\mathrm{q}}\: \\ $$$$\mathrm{then}\:\mid\overset{\rightarrow} {\mathrm{q}}\mid\:=?\: \\ $$

Question Number 144164    Answers: 1   Comments: 0

In ΔABC given a=5, b=7 & c= 4. If ∡CAB = α then cot ((1/2)α)=?

$$\mathrm{In}\:\Delta\mathrm{ABC}\:\mathrm{given}\:\mathrm{a}=\mathrm{5},\:\mathrm{b}=\mathrm{7}\:\&\:\mathrm{c}=\:\mathrm{4}. \\ $$$$\mathrm{If}\:\measuredangle\mathrm{CAB}\:=\:\alpha\:\mathrm{then}\:\mathrm{cot}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\alpha\right)=? \\ $$

Question Number 144162    Answers: 0   Comments: 1

Question Number 144156    Answers: 1   Comments: 2

Question Number 144152    Answers: 2   Comments: 0

I=∫((e^x^2 +e^x )/(e^x^2 +1))dx=?

$$\mathrm{I}=\int\frac{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{e}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{1}}\mathrm{dx}=? \\ $$

Question Number 144148    Answers: 1   Comments: 0

{ ((2ln x+ln y = 2)),((x^2 + y = e^2 +1)) :}

$$\begin{cases}{\mathrm{2ln}\:\mathrm{x}+\mathrm{ln}\:\mathrm{y}\:=\:\mathrm{2}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2}} +\mathrm{1}}\end{cases} \\ $$

Question Number 144143    Answers: 1   Comments: 0

∫_(1/a) ^a ((arctg(x))/x)dx=???

$$\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \frac{{arctg}\left({x}\right)}{{x}}{dx}=??? \\ $$

Question Number 144142    Answers: 1   Comments: 0

∫ ((√(cos x+(√(cos x+(√(cos x+(√(cos x+(√(...))))))))))/(sin x)) dx

$$\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{...}}}}}}{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx} \\ $$

Question Number 144139    Answers: 2   Comments: 0

Question Number 144136    Answers: 0   Comments: 1

Question Number 144120    Answers: 2   Comments: 0

log_2 3 = x , log_3 5 = y , lg6 = ?

$${log}_{\mathrm{2}} \mathrm{3}\:=\:{x}\:,\:{log}_{\mathrm{3}} \mathrm{5}\:=\:{y}\:,\:{lg}\mathrm{6}\:=\:? \\ $$

Question Number 144118    Answers: 0   Comments: 0

Let a,b,c > 0 and a+b+c = 3. Prove that (((√(ab))+1)/( (√(ab))+(√c)))+(((√(bc))+1)/( (√(bc))+(√a)))+(((√(ca))+1)/( (√(ca))+(√b))) ≥ (√a)+(√b)+(√c)

$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+{c}\:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{{ab}}+\mathrm{1}}{\:\sqrt{{ab}}+\sqrt{{c}}}+\frac{\sqrt{{bc}}+\mathrm{1}}{\:\sqrt{{bc}}+\sqrt{{a}}}+\frac{\sqrt{{ca}}+\mathrm{1}}{\:\sqrt{{ca}}+\sqrt{{b}}}\:\geqslant\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

  Pg 737      Pg 738      Pg 739      Pg 740      Pg 741      Pg 742      Pg 743      Pg 744      Pg 745      Pg 746   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com