Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 742

Question Number 142307    Answers: 1   Comments: 0

lim_(x→0) ((tan (tan x)−tan (tan (tan x)))/(tan x∙tan (tan x)∙tan (tan (tan x))))=?

$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)−\mathrm{tan}\:\left(\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\right)}{\mathrm{tan}\:\mathrm{x}\centerdot\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\centerdot\mathrm{tan}\:\left(\mathrm{tan}\:\left(\mathrm{tan}\:\mathrm{x}\right)\right)}=? \\ $$

Question Number 142306    Answers: 0   Comments: 0

Question Number 142277    Answers: 2   Comments: 0

lim_(x→0) ((1−e^(sin x ln (cos x)) )/x^3 ) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−{e}^{\mathrm{sin}\:{x}\:\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)} }{{x}^{\mathrm{3}} }\:=? \\ $$

Question Number 142276    Answers: 1   Comments: 0

∫_0 ^( 2) (√(1+e^(2x) ))dx

$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \sqrt{\mathrm{1}+{e}^{\mathrm{2}{x}} }{dx} \\ $$

Question Number 142275    Answers: 0   Comments: 0

.......Advanced ...∗∗∗∗∗ ...Integral...... Prove that :: Φ :=∫_0 ^( 1) ((1−x)/((1−x+x^2 )log(x)))dx= proof:: Φ:=∫_0 ^( 1) ((1−x^2 )/((1−x^3 )log(x)))dx f (a):= ∫_0 ^( 1) ((1−x^a )/((1−x^3 )log(x))) Φ := f (2) ........✓ f ′(a):=∫_0 ^( 1) ((−x^a log(x))/((1−x^3 )log(x)))=∫_0 ^( 1) ((−x^a )/(1−x^3 ))dx (★) (★):: x^3 =y ⇒ f ′(a):=(1/3)∫_0 ^( 1) ((y^((−2)/3) −y^((a/3)−(2/3)) )/(1−y))dy :=(1/3)∫_0 ^( 1) ((y^((−2)/3) −1+1−y^((a/3)−(1/3)) )/(1−y))dy :=(1/3)(ψ((a/3)+(2/3))−ψ((2/3))) f (a):=log(Γ((a/3)+(2/3)))−(a/3)ψ((2/3))+C f (0):=0=log(Γ((2/3)))+C C :=−log(Γ((2/3))) Φ:= f (2)=log(Γ((4/3)))−(2/3) ψ((2/3))−log(Γ((2/3))) :=log(((Γ((4/3)))/(Γ((2/3)))))−(2/3)ψ((2/3)) ....✓

$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:.......{Advanced}\:\:...\ast\ast\ast\ast\ast\:...{Integral}...... \\ $$$$\:\:\:\:\:\:{Prove}\:\:{that}\:::\:\:\:\Phi\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right){log}\left({x}\right)}{dx}= \\ $$$$\:\:\:{proof}:: \\ $$$$\:\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:{f}\:\left({a}\right):=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{{a}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)} \\ $$$$\:\:\:\:\:\:\:\Phi\::=\:{f}\:\left(\mathrm{2}\right)\:........\checkmark \\ $$$$\:\:\:\:\:\:\:{f}\:'\left({a}\right):=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{x}^{{a}} {log}\left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{x}^{{a}} }{\mathrm{1}−{x}^{\mathrm{3}} }{dx}\:\:\left(\bigstar\right) \\ $$$$\:\:\:\:\left(\bigstar\right)::\:\:{x}^{\mathrm{3}} ={y}\:\Rightarrow\:{f}\:'\left({a}\right):=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{y}^{\frac{−\mathrm{2}}{\mathrm{3}}} −{y}^{\frac{{a}}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{1}−{y}}{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{y}^{\frac{−\mathrm{2}}{\mathrm{3}}} −\mathrm{1}+\mathrm{1}−{y}^{\frac{{a}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{1}−{y}}{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{3}}\left(\psi\left(\frac{{a}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:{f}\:\left({a}\right):={log}\left(\Gamma\left(\frac{{a}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\right)\right)−\frac{{a}}{\mathrm{3}}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:{f}\:\left(\mathrm{0}\right):=\mathrm{0}={log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:\:{C}\::=−{log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\Phi:=\:{f}\:\left(\mathrm{2}\right)={log}\left(\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\right)−\frac{\mathrm{2}}{\mathrm{3}}\:\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−{log}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\::={log}\left(\frac{\Gamma\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}{\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}\right)−\frac{\mathrm{2}}{\mathrm{3}}\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:....\checkmark \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 142273    Answers: 0   Comments: 1

∫_(1/3) ^3 ((x+sin (x^2 −(1/x^2 )))/(x(2+cos (x+(1/x))))) dx ?

$$\:\:\underset{\frac{\mathrm{1}}{\mathrm{3}}} {\overset{\mathrm{3}} {\int}}\:\frac{{x}+\mathrm{sin}\:\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{x}\left(\mathrm{2}+\mathrm{cos}\:\left({x}+\frac{\mathrm{1}}{{x}}\right)\right)}\:{dx}\:? \\ $$

Question Number 142164    Answers: 0   Comments: 1

Question Number 142151    Answers: 0   Comments: 1

lim_(x→∞) sin (√(x+1))−sin (√x) =?

$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}}\:=? \\ $$

Question Number 142150    Answers: 1   Comments: 1

Π_(n=1) ^∞ (1+(1/n^4 )) =?

$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right)\:=?\: \\ $$

Question Number 142149    Answers: 5   Comments: 0

6. ∫(dx/(x^2 −3x+2)) 7. ∫((4dx)/(x^2 +2x+4)) 8. ∫((3−2xdx)/(x^2 −64)) 9. ∫((3x−1)/(x^3 +5x^2 +6x))dx 10. ∫((4−3x)/(x^3 −2x))dx 11. ∫(dx/(x^3 −2x+x))

$$\mathrm{6}.\:\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}} \\ $$$$\mathrm{7}.\:\int\frac{\mathrm{4}{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}} \\ $$$$\mathrm{8}.\:\int\frac{\mathrm{3}−\mathrm{2}{xdx}}{{x}^{\mathrm{2}} −\mathrm{64}} \\ $$$$\mathrm{9}.\:\int\frac{\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{6}{x}}{dx} \\ $$$$\mathrm{10}.\:\int\frac{\mathrm{4}−\mathrm{3}{x}}{{x}^{\mathrm{3}} −\mathrm{2}{x}}{dx} \\ $$$$\mathrm{11}.\:\int\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{2}{x}+{x}} \\ $$$$ \\ $$

Question Number 142148    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (1/(n!))=?

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}=? \\ $$

Question Number 142140    Answers: 1   Comments: 0

[lim_(x→0) ((sin x)/x)]=? lim_(x→0) {[((100sin^(−1) x)/x)]+[((100tan^(−1) x)/x)]}=? lim_(x→0) {[((100x)/(sin^(−1) x))]+[((100x)/(tan^(−1) x))]}=? where [x] denotes greatest integer less than or equal to x. solution please

$$\left[\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{{x}}\right]=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left[\frac{\mathrm{100sin}^{−\mathrm{1}} {x}}{{x}}\right]+\left[\frac{\mathrm{100tan}^{−\mathrm{1}} {x}}{{x}}\right]\right\}=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left[\frac{\mathrm{100}{x}}{\mathrm{sin}^{−\mathrm{1}} {x}}\right]+\left[\frac{\mathrm{100}{x}}{\mathrm{tan}^{−\mathrm{1}} {x}}\right]\right\}=? \\ $$$${where}\:\left[{x}\right]\:{denotes}\:{greatest}\:{integer}\: \\ $$$${less}\:{than}\:{or}\:{equal}\:{to}\:{x}. \\ $$$${solution}\:{please} \\ $$

Question Number 142138    Answers: 0   Comments: 6

(√(y^2 +1)) + (√(x^2 +4)) + (√(z^2 +9)) = 10 x+y+z=?

$$\sqrt{{y}^{\mathrm{2}} +\mathrm{1}}\:+\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+\:\sqrt{{z}^{\mathrm{2}} +\mathrm{9}}\:=\:\mathrm{10} \\ $$$${x}+{y}+{z}=? \\ $$

Question Number 142131    Answers: 1   Comments: 1

∫(dx/(3+2sinx+cosx))dx

$$\int\frac{{dx}}{\mathrm{3}+\mathrm{2}{sinx}+{cosx}}{dx} \\ $$

Question Number 142120    Answers: 2   Comments: 2

Question Number 142116    Answers: 2   Comments: 0

use trigonometric substitution to solve ∫(x^3 /( (√(9−x^2 ))))dx

$${use}\:{trigonometric}\:{substitution}\:{to}\:{solve} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 142115    Answers: 2   Comments: 0

simplify A_n (x)=(1+ix)^n +(1−ix)^n x from C

$$\mathrm{simplify}\:\:\mathrm{A}_{\mathrm{n}} \left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{ix}\right)^{\mathrm{n}} +\left(\mathrm{1}−\mathrm{ix}\right)^{\mathrm{n}} \:\:\:\mathrm{x}\:\mathrm{from}\:\mathrm{C} \\ $$

Question Number 142105    Answers: 2   Comments: 0

Sum the series to n terms sin θ−sin 2θ+sin 3θ−........

$$\mathrm{Sum}\:\mathrm{the}\:\mathrm{series}\:\mathrm{to}\:\mathrm{n}\:\mathrm{terms} \\ $$$$\mathrm{sin}\:\theta−\mathrm{sin}\:\mathrm{2}\theta+\mathrm{sin}\:\mathrm{3}\theta−........ \\ $$

Question Number 142269    Answers: 0   Comments: 0

Question Number 142268    Answers: 0   Comments: 0

∫(e^x /(cosx))dx

$$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$

Question Number 142100    Answers: 2   Comments: 0

∫^ (1/(1+(√(1+t)) )) dt=?

$$\:\:\:\:\:\:\int^{\:} \:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{1}+{t}}\:}\:{dt}=? \\ $$

Question Number 142096    Answers: 0   Comments: 1

Question Number 142092    Answers: 0   Comments: 1

Question Number 142085    Answers: 2   Comments: 0

Proof that 1+3n<n^2 for every positive integer n≥4

$${Proof}\:{that}\:\mathrm{1}+\mathrm{3}{n}<{n}^{\mathrm{2}} \:{for}\:{every}\:{positive}\:{integer}\:{n}\geqslant\mathrm{4} \\ $$

Question Number 142079    Answers: 3   Comments: 0

y=(dy/dx)+(d^2 y/dx^2 )+(d^3 y/dx^3 )+..... solve this diffrential equation

$${y}=\frac{{dy}}{{dx}}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }+..... \\ $$$${solve}\:{this}\:{diffrential}\:{equation} \\ $$

Question Number 142061    Answers: 0   Comments: 3

(√(5x^2 +y^2 +z^2 +2x+2+2xy−4xz+10)) + ∣2x−y−13∣ = 3

$$\sqrt{\mathrm{5}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}+\mathrm{2}{xy}−\mathrm{4}{xz}+\mathrm{10}}\:+ \\ $$$$\mid\mathrm{2}{x}−{y}−\mathrm{13}\mid\:=\:\mathrm{3}\: \\ $$

  Pg 737      Pg 738      Pg 739      Pg 740      Pg 741      Pg 742      Pg 743      Pg 744      Pg 745      Pg 746   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com