Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 741
Question Number 144291 Answers: 1 Comments: 0
Question Number 144282 Answers: 1 Comments: 0
$$\mathrm{I}=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{sin}^{\mathrm{2021}} \mathrm{x}}{\mathrm{sin}^{\mathrm{2021}} \mathrm{x}+\mathrm{cos}^{\mathrm{2021}} \mathrm{x}}\mathrm{dx}=? \\ $$
Question Number 144273 Answers: 1 Comments: 0
Question Number 144272 Answers: 1 Comments: 0
$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}} }\mathrm{tanh}\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}} }\right)=? \\ $$
Question Number 144271 Answers: 3 Comments: 1
$${a},{b},{c}\:{are}\:{in}\:{G}.{P}.\:{If}\:{a}^{{x}} ={b}^{{y}} ={c}^{{z}} \\ $$$${prove}\:{that}\:\frac{\mathrm{1}}{{x}},\frac{\mathrm{1}}{{z}}\:{are}\:{in}\:{A}.{P}. \\ $$
Question Number 144270 Answers: 1 Comments: 0
Question Number 144269 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \lfloor\frac{{y}^{\mathrm{3}} }{{e}^{{y}} −\mathrm{1}}\rfloor{dy} \\ $$
Question Number 144268 Answers: 2 Comments: 0
Question Number 144264 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{2}{a}+{b}\:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{followings}:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}}{{n}}{a}\left({b}+\mathrm{4}\right)+\mathrm{3}{b}^{\frac{\mathrm{1}}{{n}}} \:\leqslant\:\frac{\mathrm{10}+\mathrm{3}{n}}{{n}},\:\forall{n}\in\mathbb{N}^{+} \geqslant\mathrm{1}. \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{na}\left({b}+\mathrm{4}\right)+\mathrm{3}{b}^{{n}} \:\geqslant\:\mathrm{10}{n}+\mathrm{3},\:\forall{n}\in\mathbb{N}^{+} \geqslant\mathrm{2}. \\ $$$$ \\ $$
Question Number 144261 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}. \\ $$
Question Number 144260 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number} \\ $$$${x}\:\mathrm{that}\:\mathrm{satisfy}\:\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\right)^{\mathrm{2}{x}−\mathrm{3}} =\mathrm{1} \\ $$
Question Number 144249 Answers: 2 Comments: 0
$$\left(\sqrt{\mathrm{5}\:+\:\mathrm{2}\sqrt{\mathrm{6}}}\right)^{\boldsymbol{{z}}} \:+\:\left(\sqrt{\mathrm{5}\:-\:\mathrm{2}\sqrt{\mathrm{6}}}\right)^{\boldsymbol{{z}}} \:=\:\mathrm{10} \\ $$$${Find}:\:\boldsymbol{{z}}=? \\ $$
Question Number 144248 Answers: 1 Comments: 0
Question Number 144246 Answers: 1 Comments: 0
$$\mathrm{A}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}\right)+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{2}\right)+\mathrm{2}}\:+..+\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{2}}\right] \\ $$
Question Number 144245 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\left({x}−\mathrm{1}\right)^{{n}} }{dx} \\ $$
Question Number 144244 Answers: 1 Comments: 0
$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{5tan}^{\mathrm{4}} \mathrm{x}+\mathrm{3cot}^{\mathrm{4}} \mathrm{x}}{\mathrm{tan}^{\mathrm{4}} \mathrm{x}+\mathrm{cot}^{\mathrm{4}} \mathrm{x}}\mathrm{dx}=? \\ $$
Question Number 144241 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\frac{\mathrm{dx}}{\left(\mathrm{2}+\mathrm{cosx}\right)^{\mathrm{2}} } \\ $$
Question Number 144237 Answers: 2 Comments: 0
Question Number 144234 Answers: 1 Comments: 0
$$\int\:\frac{\sqrt{{x}^{\mathrm{2}} \:-\:{x}}}{{x}^{\mathrm{3}} }\:{dx}\:=\:? \\ $$
Question Number 144231 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{Nice}\:...{Calculus} \\ $$$$\:\:\:\:\:\:{if}\:\:::\:\: \\ $$$$\:\:\:\:\:\:\:\varphi\:\left(\:{n}\:\right)\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\:{n}} }{\mathrm{1}\:+\:{x}}\:{dx} \\ $$$$\:\:\:\:\:{then}\:\:::\:\:\:\underset{{n}=\mathrm{1}} {\overset{\:\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\varphi\:\left({n}\:\right)}{{n}}\:=? \\ $$$$\:\:\:\:\:\:\:........ \\ $$
Question Number 144226 Answers: 1 Comments: 1
Question Number 144222 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 144221 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{3}{x}} {log}^{\mathrm{2}} \left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right){dx} \\ $$
Question Number 144220 Answers: 1 Comments: 0
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{{n}} \right){dx} \\ $$$${n}\:\in{N} \\ $$
Question Number 144219 Answers: 1 Comments: 0
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} } \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 144218 Answers: 1 Comments: 0
$${U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}+\mathrm{1}}} \\ $$$${find}\:{a}\:{eqivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$
Pg 736 Pg 737 Pg 738 Pg 739 Pg 740 Pg 741 Pg 742 Pg 743 Pg 744 Pg 745
Terms of Service
Privacy Policy
Contact: info@tinkutara.com