Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 740
Question Number 142438 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{{lnx}}{dx} \\ $$$${how}\:\:{many}\:{tricks}\:{solve}\:{this} \\ $$
Question Number 142437 Answers: 1 Comments: 0
Question Number 142435 Answers: 0 Comments: 1
Question Number 142430 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 142429 Answers: 1 Comments: 0
$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{{n}} {x}}{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{U}_{{n}} \\ $$
Question Number 142426 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{xlogx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 142425 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{3}} {x}}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 142424 Answers: 0 Comments: 0
$$\left.\mathrm{2}\right){calculate}\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{{n}}\right)\:\:\:\left({n}>\mathrm{2}\right) \\ $$$$\left.\mathrm{1}\right)\:{use}\:{Rieman}\:{sum}\:{to}\:{prove} \\ $$$${that}\:\int_{\mathrm{0}} ^{\pi} {log}\left({sinx}\right){dx}=−\pi{log}\mathrm{2} \\ $$
Question Number 142423 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 142420 Answers: 0 Comments: 0
Question Number 142415 Answers: 1 Comments: 0
$$\frac{{x}}{{x}+\mathrm{4}}=\frac{\mathrm{5}\lfloor{x}\rfloor−\mathrm{7}}{\mathrm{7}\lfloor{x}\rfloor−\mathrm{5}} \\ $$$${x}=? \\ $$
Question Number 142414 Answers: 1 Comments: 2
$$\mathrm{4}{sin}^{\mathrm{2}} \mathrm{18}°\:+\:\mathrm{2}{sin}\mathrm{18}°\:+\:\mathrm{2},\mathrm{5}\:=\:? \\ $$
Question Number 142408 Answers: 1 Comments: 1
Question Number 142404 Answers: 2 Comments: 1
Question Number 142401 Answers: 1 Comments: 1
Question Number 142395 Answers: 0 Comments: 0
Question Number 142397 Answers: 0 Comments: 0
Question Number 142393 Answers: 1 Comments: 0
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{sec}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)=\mathrm{n}^{\mathrm{2}} ......??? \\ $$
Question Number 142389 Answers: 1 Comments: 0
$$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$
Question Number 142388 Answers: 1 Comments: 0
$$\mathrm{n}\:\in\:\mathbb{N},\:\mathrm{b},\:\mathrm{a}\:\in\:\mathbb{N}\:;\:\mathrm{a}\neq\mathrm{0}. \\ $$$$\mathrm{In}\:\mathrm{base}\:\mathrm{10};\:\mathrm{n}=\overline {\mathrm{aabb}}\: \\ $$$$\mathrm{1}.\:\mathrm{show}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{not}\:\mathrm{prime}. \\ $$$$\mathrm{2}.\:\mathrm{Give}\:\mathrm{conditions}\:\mathrm{on}\:\mathrm{b}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{n}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{3}.\:\mathrm{Determinate}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{perfect}\:\mathrm{square}. \\ $$
Question Number 142383 Answers: 1 Comments: 1
Question Number 142379 Answers: 0 Comments: 1
$${Show}\:{that}\:\mathrm{1}+\mathrm{3}{n}<{n}^{\mathrm{2}} \:{for}\:{every}\:{positive}\:{integer}\:{n}\geqslant\mathrm{4} \\ $$
Question Number 142365 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int\:\:\sqrt{\mathrm{1}+\mathrm{e}^{\mathrm{x}} \:+\mathrm{e}^{\mathrm{2x}} }\mathrm{dx} \\ $$
Question Number 142362 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {ln}\left(\frac{\mathrm{1}}{{x}}\right).{j}_{\mathrm{0}} \left({x}\right){dx}:=\:\gamma+{ln}\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\:{Hint}:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:{j}_{\mathrm{0}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\mathrm{2}^{\mathrm{2}{n}} .\Gamma^{\mathrm{2}} \left({n}+\mathrm{1}\right)}\:\left({Bessel}\:{function}\right) \\ $$$$\:\:\:\:{Hint}:\mathrm{2}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{L}\:\left[\:{j}_{\mathrm{0}} \left({x}\right)\right]=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }} \\ $$
Question Number 142361 Answers: 1 Comments: 0
Question Number 142359 Answers: 0 Comments: 0
Pg 735 Pg 736 Pg 737 Pg 738 Pg 739 Pg 740 Pg 741 Pg 742 Pg 743 Pg 744
Terms of Service
Privacy Policy
Contact: info@tinkutara.com