Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 740

Question Number 144502    Answers: 0   Comments: 2

it is known that after injecting the 1^(st) dosage of a drug in exactly hours p(t)= { ((Ae^(−(t/(24))) , 0≤t≤8)),(((A+Ae^(−(1/3)) )e^(−(((t−8)/(24)))) , 8 ≤ t≤24)) :} A is the initial dosage at t= 0hours a) show that towards the application of the n^(th) dosage , the dosage remained in blood is (((1−e^(−(1/n)) )/(1−e^(−(1/3)) )))×A

$${it}\:{is}\:{known}\:{that}\:{after}\:{injecting}\:{the}\:\mathrm{1}^{{st}} \\ $$$${dosage}\:{of}\:{a}\:{drug}\:{in}\:{exactly}\:{hours} \\ $$$${p}\left({t}\right)=\begin{cases}{{Ae}^{−\frac{{t}}{\mathrm{24}}} ,\:\mathrm{0}\leqslant{t}\leqslant\mathrm{8}}\\{\left({A}+{Ae}^{−\frac{\mathrm{1}}{\mathrm{3}}} \right){e}^{−\left(\frac{{t}−\mathrm{8}}{\mathrm{24}}\right)} ,\:\mathrm{8}\:\leqslant\:{t}\leqslant\mathrm{24}}\end{cases} \\ $$$${A}\:{is}\:{the}\:{initial}\:{dosage}\:{at}\:{t}=\:\mathrm{0}{hours} \\ $$$$\left.{a}\right)\:{show}\:{that}\:{towards}\:{the}\:{application}\:{of} \\ $$$${the}\:{n}^{{th}} \:{dosage}\:,\:{the}\:{dosage}\:{remained}\:{in}\:{blood}\:{is} \\ $$$$\left(\frac{\mathrm{1}−{e}^{−\frac{\mathrm{1}}{{n}}} }{\mathrm{1}−{e}^{−\frac{\mathrm{1}}{\mathrm{3}}} }\right)×{A} \\ $$

Question Number 144500    Answers: 2   Comments: 0

calculate Σ_(n=0) ^∞ (1/(n^2 +4))

$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{4}} \\ $$

Question Number 144499    Answers: 1   Comments: 0

find ∫_0 ^∞ ((arctan(x^n ))/x^n )dx (n≥2) natural

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{n}} \right)}{\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{2}\right)\:\mathrm{natural} \\ $$

Question Number 144496    Answers: 2   Comments: 1

Question Number 144504    Answers: 0   Comments: 0

for what values of b is ln(a−b)ln(a+b)≤ln^2 a Note: 0≤b<a

$${for}\:{what}\:{values}\:{of}\:{b}\:{is} \\ $$$${ln}\left({a}−{b}\right){ln}\left({a}+{b}\right)\leqslant{ln}^{\mathrm{2}} {a} \\ $$$${Note}:\:\mathrm{0}\leqslant{b}<{a} \\ $$

Question Number 144484    Answers: 1   Comments: 0

Question Number 144482    Answers: 1   Comments: 0

show that ∀n∈Z E(((n−1)/2))+E(((n+2)/4))+E(((n+4)/4))=n

$${show}\:{that}\:\forall{n}\in\mathbb{Z}\: \\ $$$${E}\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right)+{E}\left(\frac{{n}+\mathrm{2}}{\mathrm{4}}\right)+{E}\left(\frac{{n}+\mathrm{4}}{\mathrm{4}}\right)={n} \\ $$

Question Number 144474    Answers: 1   Comments: 0

A=(√(1+(√(7+(√(1+(√(7+(√(1+(√(7+...........))))))))))))

$$\mathrm{A}=\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+...........}}}}}} \\ $$

Question Number 144483    Answers: 1   Comments: 0

(p_n )=(1+(1/n^2 ))(1+(2/n^2 ))...(1+(n/n^2 )) Σ_(k=1) ^n k^2 =(1/6)n(2n+1)(n+1) show that (1/2)(1+(1/n))−(1/(12n^2 ))(2n+1)(n+1)<ln(p_n )<(1/2)(1+(1/n)) hence find lim_(n→∞) (p_n ) 2) show that t−(t^2 /2) ≤ln(1+t) ≤t, ∀t>0 please help

$$\left({p}_{{n}} \right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)...\left(\mathrm{1}+\frac{{n}}{{n}^{\mathrm{2}} }\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right) \\ $$$${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)−\frac{\mathrm{1}}{\mathrm{12}{n}^{\mathrm{2}} }\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)<{ln}\left({p}_{{n}} \right)<\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$$${hence}\:{find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({p}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right)\:{show}\:{that}\: \\ $$$${t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{t}\right)\:\leqslant{t},\:\forall{t}>\mathrm{0} \\ $$$${please}\:{help} \\ $$$$ \\ $$

Question Number 144473    Answers: 2   Comments: 0

L=lim_(x→(π/3)) ((8cos^2 5x+2cosx−3)/(4cos^2 5x+8cosx−5)) =?

$$\mathrm{L}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\frac{\mathrm{8cos}^{\mathrm{2}} \mathrm{5x}+\mathrm{2cosx}−\mathrm{3}}{\mathrm{4cos}^{\mathrm{2}} \mathrm{5x}+\mathrm{8cosx}−\mathrm{5}}\:\:=? \\ $$

Question Number 144471    Answers: 0   Comments: 0

Question Number 144470    Answers: 0   Comments: 0

Solve for real positive numbers the equation: z^(log(3)) + z^(log(4)) + z^(log(5)) = z^(log(6))

$${Solve}\:{for}\:{real}\:{positive}\:{numbers}\:{the} \\ $$$${equation}: \\ $$$$\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{3}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{4}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{5}\right)} \:=\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{6}\right)} \\ $$

Question Number 144468    Answers: 0   Comments: 1

Question Number 144525    Answers: 2   Comments: 0

If y=cosh (x^2 −3x+1) (d^2 y/dx^2 ) =?

$$\:\mathrm{If}\:\mathrm{y}=\mathrm{cosh}\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{1}\right) \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$

Question Number 144464    Answers: 1   Comments: 0

f(x)=(2/((1+sinx)^2 )) developp f at fourier serie

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\left(\mathrm{1}+\mathrm{sinx}\right)^{\mathrm{2}} } \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$

Question Number 144463    Answers: 1   Comments: 0

Determiner l′original de laplace F(p)=(1/((p^2 +p+1)^2 ))

$${Determiner}\:{l}'{original}\:{de}\:{laplace} \\ $$$${F}\left({p}\right)=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} +{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 144460    Answers: 1   Comments: 0

If C=226k find the least integal value of k that will make C a perfect square

$$ \\ $$$$\mathrm{If}\:\mathrm{C}=\mathrm{226}{k}\:\mathrm{find}\:\mathrm{the}\:\mathrm{least} \\ $$$$\mathrm{integal}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{that}\:\mathrm{will} \\ $$$$\mathrm{make}\:\mathrm{C}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square} \\ $$

Question Number 144479    Answers: 0   Comments: 0

Consider the followinge statments P: All students with measles stay in the sick bay. T: All students in the sick bay do not do homework. Which of the following is/are valid deductions from the two statements a) Kofi does not have measles so Kofi does his homework. b)George has done his homework therefore he does not stay in the sick bay c) Jane does not have measles so she does not stay in the sick bay

$$ \\ $$$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{followinge} \\ $$$$\mathrm{statments} \\ $$$$\mathrm{P}:\:\mathrm{All}\:\mathrm{students}\:\mathrm{with}\:\mathrm{measles} \\ $$$$\:\mathrm{stay}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sick}\:\mathrm{bay}. \\ $$$$\mathrm{T}:\:\mathrm{All}\:\mathrm{students}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sick} \\ $$$$\:\mathrm{bay}\:\mathrm{do}\:\mathrm{not}\:\mathrm{do}\:\mathrm{homework}. \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\:\mathrm{is}/\mathrm{are}\:\mathrm{valid}\:\mathrm{deductions} \\ $$$$\:\mathrm{from}\:\mathrm{the}\:\mathrm{two}\:\mathrm{statements} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Kofi}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\: \\ $$$$\mathrm{measles}\:\mathrm{so}\:\mathrm{Kofi}\:\mathrm{does}\:\mathrm{his} \\ $$$$\:\mathrm{homework}. \\ $$$$\left.\mathrm{b}\right)\mathrm{George}\:\mathrm{has}\:\mathrm{done}\:\mathrm{his}\: \\ $$$$\mathrm{homework}\:\mathrm{therefore}\:\mathrm{he} \\ $$$$\mathrm{does}\:\mathrm{not}\:\mathrm{stay}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sick}\:\mathrm{bay} \\ $$$$\left.\:\mathrm{c}\right)\:\mathrm{Jane}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have} \\ $$$$\mathrm{measles}\:\mathrm{so}\:\mathrm{she}\:\mathrm{does}\:\mathrm{not}\: \\ $$$$\mathrm{stay}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sick}\:\mathrm{bay} \\ $$

Question Number 144452    Answers: 2   Comments: 0

Find minimum value of f(x)=sin (x+3)−sin (x+1)−2cos (x+2) where xεR

$$\:\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{sin}\:\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{2cos}\:\left(\mathrm{x}+\mathrm{2}\right) \\ $$$$\mathrm{where}\:\mathrm{x}\epsilon\mathrm{R} \\ $$

Question Number 144450    Answers: 3   Comments: 0

.........Calculus(I)......... Lim_( x → 0) ((1 −cos(xcos((x/2)).cos((x/4))cos((x/8))))/x^( 2) )=?

$$ \\ $$$$\:\:\:\:\:\:\:\:.........\mathrm{C}{alculus}\left(\mathrm{I}\right)......... \\ $$$$\:\:\mathrm{Lim}_{\:\:{x}\:\rightarrow\:\mathrm{0}} \frac{\mathrm{1}\:−{cos}\left({xcos}\left(\frac{{x}}{\mathrm{2}}\right).{cos}\left(\frac{{x}}{\mathrm{4}}\right){cos}\left(\frac{{x}}{\mathrm{8}}\right)\right)}{{x}^{\:\mathrm{2}} }=? \\ $$

Question Number 144447    Answers: 1   Comments: 1

Question Number 144446    Answers: 2   Comments: 0

Question Number 144439    Answers: 1   Comments: 4

Question Number 144432    Answers: 1   Comments: 0

∫_0 ^∝ t^(n−2) costdt

$$\int_{\mathrm{0}} ^{\propto} {t}^{{n}−\mathrm{2}} {costdt} \\ $$

Question Number 144431    Answers: 1   Comments: 0

∫tan x sin^2 x cos^3 x cot^4 x dx =?

$$\:\:\:\int\mathrm{tan}\:\mathrm{x}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{cot}\:^{\mathrm{4}} \mathrm{x}\:\mathrm{dx}\:=? \\ $$

Question Number 144429    Answers: 0   Comments: 0

Set a,b∈[−Π Π] be such that cos (a−b)=1 and cos (a+b)=(1/e). Then find the number of pairs of a,b satisfying the above system of equations?

$$\mathrm{Set}\:\mathrm{a},\mathrm{b}\in\left[−\Pi\:\Pi\right]\:\mathrm{be}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\:\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{cos}\:\left(\mathrm{a}+\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{e}}. \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{pairs} \\ $$$$\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{above}\: \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{equations}? \\ $$

  Pg 735      Pg 736      Pg 737      Pg 738      Pg 739      Pg 740      Pg 741      Pg 742      Pg 743      Pg 744   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com