Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 740

Question Number 144143    Answers: 1   Comments: 0

∫_(1/a) ^a ((arctg(x))/x)dx=???

$$\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \frac{{arctg}\left({x}\right)}{{x}}{dx}=??? \\ $$

Question Number 144142    Answers: 1   Comments: 0

∫ ((√(cos x+(√(cos x+(√(cos x+(√(cos x+(√(...))))))))))/(sin x)) dx

$$\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{...}}}}}}{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx} \\ $$

Question Number 144139    Answers: 2   Comments: 0

Question Number 144136    Answers: 0   Comments: 1

Question Number 144120    Answers: 2   Comments: 0

log_2 3 = x , log_3 5 = y , lg6 = ?

$${log}_{\mathrm{2}} \mathrm{3}\:=\:{x}\:,\:{log}_{\mathrm{3}} \mathrm{5}\:=\:{y}\:,\:{lg}\mathrm{6}\:=\:? \\ $$

Question Number 144118    Answers: 0   Comments: 0

Let a,b,c > 0 and a+b+c = 3. Prove that (((√(ab))+1)/( (√(ab))+(√c)))+(((√(bc))+1)/( (√(bc))+(√a)))+(((√(ca))+1)/( (√(ca))+(√b))) ≥ (√a)+(√b)+(√c)

$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+{c}\:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{{ab}}+\mathrm{1}}{\:\sqrt{{ab}}+\sqrt{{c}}}+\frac{\sqrt{{bc}}+\mathrm{1}}{\:\sqrt{{bc}}+\sqrt{{a}}}+\frac{\sqrt{{ca}}+\mathrm{1}}{\:\sqrt{{ca}}+\sqrt{{b}}}\:\geqslant\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 144116    Answers: 0   Comments: 0

Question Number 144109    Answers: 3   Comments: 1

hi, everybody ! 1. calculate : I =∫_(𝛑/6) ^( (𝛑/3)) ln(tan x)dx. 2. calculate : lim_(x → e) ((x(√(1−ln x)))/(x−e)) .

$$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\mathrm{1}.\:\boldsymbol{\mathrm{calculate}}\::\:\boldsymbol{\mathrm{I}}\:=\int_{\frac{\boldsymbol{\pi}}{\mathrm{6}}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{3}}} \boldsymbol{{ln}}\left(\boldsymbol{{tan}}\:\boldsymbol{{x}}\right)\boldsymbol{{dx}}. \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{calculate}}\:\::\:\underset{\boldsymbol{{x}}\:\rightarrow\:\boldsymbol{{e}}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{x}}\sqrt{\mathrm{1}−\boldsymbol{{ln}}\:\boldsymbol{{x}}}}{\boldsymbol{{x}}−\boldsymbol{{e}}}\:. \\ $$

Question Number 144107    Answers: 1   Comments: 0

A=lim_(n→+∝) ((1+(2)^(1/7) +(3)^(1/7) +(4)^(1/7) +.....+(n)^(1/7) )/( (n^9 )^(1/7) )) =?

$$\mathrm{A}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{1}+\sqrt[{\mathrm{7}}]{\mathrm{2}}+\sqrt[{\mathrm{7}}]{\mathrm{3}}+\sqrt[{\mathrm{7}}]{\mathrm{4}}+.....+\sqrt[{\mathrm{7}}]{\mathrm{n}}}{\:\sqrt[{\mathrm{7}}]{\mathrm{n}^{\mathrm{9}} }}\:=? \\ $$

Question Number 144106    Answers: 1   Comments: 1

lim_(x→∞) ((4^(x-2) + 3^x + 2^x )/(4^(x-1) + 3^(x+1) )) = ?

$$\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{4}^{{x}-\mathrm{2}} \:+\:\mathrm{3}^{{x}} \:+\:\mathrm{2}^{{x}} }{\mathrm{4}^{{x}-\mathrm{1}} \:+\:\mathrm{3}^{{x}+\mathrm{1}} }\:=\:? \\ $$

Question Number 144095    Answers: 1   Comments: 0

if x>0 , r=pq , 1≤p≤q then: 1+rx ≤ (1+qx)^p ≤ (1+px)^q ≤ (1+x)^r

$${if}\:\:{x}>\mathrm{0}\:,\:{r}={pq}\:,\:\mathrm{1}\leqslant{p}\leqslant{q}\:\:{then}: \\ $$$$\mathrm{1}+{rx}\:\leqslant\:\left(\mathrm{1}+{qx}\right)^{\boldsymbol{{p}}} \:\leqslant\:\left(\mathrm{1}+{px}\right)^{\boldsymbol{{q}}} \:\leqslant\:\left(\mathrm{1}+{x}\right)^{\boldsymbol{{r}}} \\ $$

Question Number 144094    Answers: 1   Comments: 1

Question Number 144083    Answers: 1   Comments: 0

if a;b;c>0 then: ((9abc)/(a^3 + b^3 + c^3 )) + (a^2 /(bc)) + (b^2 /(ca)) + (c^2 /(ab)) ≥ 6

$${if}\:\:{a};{b};{c}>\mathrm{0}\:\:{then}: \\ $$$$\frac{\mathrm{9}{abc}}{{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} }\:+\:\frac{{a}^{\mathrm{2}} }{{bc}}\:+\:\frac{{b}^{\mathrm{2}} }{{ca}}\:+\:\frac{{c}^{\mathrm{2}} }{{ab}}\:\geqslant\:\mathrm{6} \\ $$

Question Number 144074    Answers: 1   Comments: 0

The parallelogram ABCD has ∣∣AB∣∣ =6, ∣∣AC∣∣=7 & d(D,AC)=2 Find d(D,AB).

$$\:\mathrm{The}\:\mathrm{parallelogram}\:\mathrm{ABCD}\:\mathrm{has} \\ $$$$\mid\mid\mathrm{AB}\mid\mid\:=\mathrm{6},\:\mid\mid\mathrm{AC}\mid\mid=\mathrm{7}\:\&\:\mathrm{d}\left(\mathrm{D},\mathrm{AC}\right)=\mathrm{2} \\ $$$$\mathrm{Find}\:\mathrm{d}\left(\mathrm{D},\mathrm{AB}\right). \\ $$

Question Number 144072    Answers: 2   Comments: 0

Use the reduction formula to rewrite −3 sin x −3 cos x in the form K sin (x+α) .

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formula}\:\mathrm{to} \\ $$$$\mathrm{rewrite}\:−\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:−\mathrm{3}\:\mathrm{cos}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{form}\:\mathrm{K}\:\mathrm{sin}\:\left(\mathrm{x}+\alpha\right)\:. \\ $$

Question Number 144069    Answers: 0   Comments: 0

I=∫_0 ^(π/2) ((2304cosx)/((cos4x−8cos2x+15)^2 ))dx=?

$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2304cosx}}{\left(\mathrm{cos4x}−\mathrm{8cos2x}+\mathrm{15}\right)^{\mathrm{2}} }\mathrm{dx}=? \\ $$

Question Number 144068    Answers: 1   Comments: 0

S_(2019) =1+ (1/2^2 ) + (1/3^2 ) + ...+ (1/(2019^2 )) =?

$$\mathrm{S}_{\mathrm{2019}} =\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:...+\:\frac{\mathrm{1}}{\mathrm{2019}^{\mathrm{2}} }\:=? \\ $$

Question Number 144067    Answers: 1   Comments: 0

L=lim_(n→+∝) ((1^2 /(n^3 +1^3 )) + (2^3 /(n^3 +2^3 )) + ...+ (n^3 /(n^3 +n^3 )))=?

$$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{1}^{\mathrm{3}} }\:+\:\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} }\:+\:...+\:\frac{\mathrm{n}^{\mathrm{3}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} }\right)=? \\ $$

Question Number 144064    Answers: 2   Comments: 0

Question Number 144062    Answers: 0   Comments: 0

Question Number 144061    Answers: 1   Comments: 0

Question Number 144060    Answers: 2   Comments: 1

p(x)=(x−1)^2 Q(x)+3x+8 p(x)=(x−2)Q(x)+R R=?

$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}\left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}\left({x}\right)+{R} \\ $$$${R}=? \\ $$

Question Number 144059    Answers: 1   Comments: 0

Question Number 144057    Answers: 2   Comments: 0

En utilisant la transforme de laplace Calculer ∫_0 ^(+∞) ((tsin(xt))/(a^2 +t^2 ))dt ∀a,x∈R^∗

$${En}\:{utilisant}\:{la}\:{transforme}\:{de}\:{laplace} \\ $$$${Calculer} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{tsin}\left({xt}\right)}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:\:\:\forall{a},{x}\in\mathbb{R}^{\ast} \\ $$

Question Number 144053    Answers: 1   Comments: 0

........ Calculus........ Ω:=lim(1/π)∫_0 ^( 2π) (Σ_(k=1) ^n ((sin(kx))/( (√2^k ))))^2 dx=?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\:{Calculus}........ \\ $$$$\:\:\:\:\:\:\:\Omega:={lim}\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{sin}\left({kx}\right)}{\:\sqrt{\mathrm{2}^{{k}} }}\right)^{\mathrm{2}} {dx}=? \\ $$$$ \\ $$

Question Number 144052    Answers: 1   Comments: 0

Evaluate ∫ ((√x)/(sinh x)) dx

$$\mathrm{Evaluate}\: \\ $$$$\:\int\:\frac{\sqrt{{x}}}{\mathrm{sinh}\:{x}}\:{dx} \\ $$

  Pg 735      Pg 736      Pg 737      Pg 738      Pg 739      Pg 740      Pg 741      Pg 742      Pg 743      Pg 744   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com