Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 74

Question Number 216123    Answers: 0   Comments: 1

determiner la surface de [ADCMNFEB]

$$\mathrm{determiner}\:\mathrm{la}\:\mathrm{surface}\:\mathrm{de} \\ $$$$\:\left[\mathrm{ADCMNFEB}\right]\:\: \\ $$

Question Number 216110    Answers: 1   Comments: 12

Question Number 216106    Answers: 2   Comments: 1

Question Number 216105    Answers: 2   Comments: 0

Question Number 216094    Answers: 0   Comments: 0

Question Number 216093    Answers: 1   Comments: 0

Question Number 216144    Answers: 4   Comments: 0

1. Lim_(n→∞) [(1/n^2 )+(2/n^2 )+(3/n^2 )+...+((n+1)/n^2 )] 2. lim_(x→0) (((3sin5x)/x))^((1−cos4x)/x^2 )

$$\mathrm{1}.\:\boldsymbol{\mathrm{Lim}}_{\mathrm{n}\rightarrow\infty} \left[\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{2}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{3}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+...+\frac{\boldsymbol{\mathrm{n}}+\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right] \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \left(\frac{\mathrm{3}\boldsymbol{\mathrm{sin}}\mathrm{5}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}\right)^{\frac{\mathrm{1}−\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }} \\ $$

Question Number 216078    Answers: 0   Comments: 7

see comments

$${see}\:{comments} \\ $$

Question Number 216077    Answers: 1   Comments: 0

Find the largest value of the non negative integer p for which lim_(x→1) {((− px + sin(x − 1) + p)/(x + sin(x − 1) − 1))}^((1 − x)/(1 − (√x))) = (1/4) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left\{\frac{−\:{px}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:+\:{p}}{{x}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:−\:\mathrm{1}}\right\}^{\frac{\mathrm{1}\:−\:{x}}{\mathrm{1}\:−\:\sqrt{{x}}}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$

Question Number 216076    Answers: 1   Comments: 0

((⌊(x/3) ⌋)/(⌊ (x/4) ⌋)) = ((21)/(16)) ; x=?

$$\:\:\:\frac{\lfloor\frac{\mathrm{x}}{\mathrm{3}}\:\rfloor}{\lfloor\:\frac{\mathrm{x}}{\mathrm{4}}\:\rfloor}\:=\:\frac{\mathrm{21}}{\mathrm{16}}\:;\:\mathrm{x}=? \\ $$

Question Number 216074    Answers: 2   Comments: 0

find the maximum of y=∣sin x∣+∣sin 2x∣.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:{y}=\mid\mathrm{sin}\:{x}\mid+\mid\mathrm{sin}\:\mathrm{2}{x}\mid. \\ $$

Question Number 216060    Answers: 2   Comments: 4

Question Number 216058    Answers: 0   Comments: 5

Question Number 216056    Answers: 0   Comments: 0

Question Number 216055    Answers: 1   Comments: 0

lim_(x→0) ((sin^2 2x)/( ((cos x))^(1/3) −((cos x))^(1/4) )) =?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$

Question Number 216050    Answers: 1   Comments: 0

x,y,z ∈ N lcd(x;y)=72 lcd(x;z)=600 lcd(y;z)=900 Find: 1.(x;y;z)=? 2.(x;y;z)=? 3.(x;y;z)=? ... a)15 b)16 c)24 d)27 e)64

$$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{N} \\ $$$$\mathrm{lcd}\left(\mathrm{x};\mathrm{y}\right)=\mathrm{72} \\ $$$$\mathrm{lcd}\left(\mathrm{x};\mathrm{z}\right)=\mathrm{600} \\ $$$$\mathrm{lcd}\left(\mathrm{y};\mathrm{z}\right)=\mathrm{900} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{1}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:... \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\mathrm{5}\left.\:\:\:\:\:\mathrm{b}\right)\mathrm{16}\:\:\:\:\:\mathrm{c}\right)\mathrm{24}\:\:\:\:\:\mathrm{d}\right)\mathrm{27}\:\:\:\:\:\mathrm{e}\right)\mathrm{64} \\ $$

Question Number 216046    Answers: 2   Comments: 0

x = bz + cy, y = cx + az and z = bx + ay then prove that a^2 + b^2 + c^2 + 2abc = 1.

$${x}\:=\:{bz}\:+\:{cy},\:{y}\:=\:{cx}\:+\:{az}\:\mathrm{and}\:{z}\:=\:{bx}\:+\:{ay} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{2}{abc}\:=\:\mathrm{1}. \\ $$

Question Number 216042    Answers: 1   Comments: 2

(i) ∫sec^5 θdθ (ii) ∫ (((√(tan θ)) dθ)/(cos θ))

$$\left({i}\right)\:\:\:\int\mathrm{sec}\:^{\mathrm{5}} \theta{d}\theta \\ $$$$\left({ii}\right)\:\:\int\:\frac{\sqrt{\mathrm{tan}\:\theta}\:{d}\theta}{\mathrm{cos}\:\theta} \\ $$

Question Number 216033    Answers: 2   Comments: 0

Question Number 216032    Answers: 2   Comments: 0

lim_(x→0) ((1−cos x (√(cos 2x)))/x^2 ) =?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$

Question Number 216016    Answers: 1   Comments: 0

Question Number 216014    Answers: 1   Comments: 0

lim_(Δx→cos(π/2)) ((sin^3 (Δx+x)−sin^3 x)/(2^(−1) ∙Δx))=?

$$\underset{\Delta{x}\rightarrow{cos}\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}^{\mathrm{3}} \left(\Delta{x}+{x}\right)−{sin}^{\mathrm{3}} {x}}{\mathrm{2}^{−\mathrm{1}} \centerdot\Delta{x}}=? \\ $$

Question Number 216010    Answers: 2   Comments: 0

Solve for x and y ax^2 + bxy + cy^2 = bx^2 + cxy + ay^2 = d.

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$${ax}^{\mathrm{2}} \:+\:{bxy}\:+\:{cy}^{\mathrm{2}} \:=\:{bx}^{\mathrm{2}} \:+\:{cxy}\:+\:{ay}^{\mathrm{2}} \:=\:{d}. \\ $$

Question Number 215999    Answers: 2   Comments: 0

if the fraction ((m^2 +25m)/(m+1)) is reductible. how many values does m take if is a 2 digit number? thanks

$${if}\:{the}\:{fraction}\:\frac{{m}^{\mathrm{2}} +\mathrm{25}{m}}{{m}+\mathrm{1}}\:\:{is}\:{reductible}.\:{how}\:{many}\:{values}\:{does}\:{m}\:\:{take}\:{if}\:{is}\:{a}\:\mathrm{2}\:{digit}\:\:{number}?\:{thanks} \\ $$

Question Number 215995    Answers: 1   Comments: 0

∫∫∫_D (√(x^2 +y^2 +z^2 )) dv = ? D = x^2 +y^2 +z^2 <z

$$\int\int\underset{{D}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:\mathrm{dv}\:=\:? \\ $$$$\mathrm{D}\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} <{z} \\ $$

Question Number 215994    Answers: 1   Comments: 0

Solve for z∈C: ∣z^z ∣=1

$$\mathrm{Solve}\:\mathrm{for}\:{z}\in\mathbb{C}:\:\:\:\:\:\mid{z}^{{z}} \mid=\mathrm{1} \\ $$

  Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com