Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 74
Question Number 216715 Answers: 2 Comments: 0
$$\:\:\:\:\boldsymbol{{F}}{ind}\:\int\frac{\boldsymbol{{S}}{in}\left(\frac{\mathrm{5}{x}\:}{\mathrm{2}\:}\right)\:\:}{\boldsymbol{{S}}{in}\left(\frac{{x}\:}{\mathrm{2}\:}\right)\:\:\:\:\:}\:.\boldsymbol{{dx}}\:\:\: \\ $$
Question Number 216710 Answers: 0 Comments: 0
$$\:\:\:\mathrm{let}\:{y}_{\mathrm{1}} \:,\:{y}_{\mathrm{2}} \:,\:{y}_{\mathrm{3}\:\:} ...\:{y}_{{p}} \:\mathrm{be}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{number} \\ $$$$\:\:\:\mathrm{consider}\:\mathrm{the}\:\mathrm{sequences} \\ $$$$\:{s}_{{n}} \:=\:\:\frac{{y}_{\mathrm{1}} ^{{n}} +{y}_{\mathrm{2}} ^{{n}} +{y}_{\mathrm{3}} ^{{n}} +...+{y}_{{p}} ^{{n}} }{{p}}\:\:\:{and}\:{x}_{{n}\:} =\:{s}_{{n}} ^{\mathrm{1}/{n}} \:\:,\:\:\:{n}\in\mathbb{N} \\ $$$$\:\:\:\mathrm{show}\:\mathrm{that}\:\left\{{x}_{{n}} \right\}\:\mathrm{is}\:\mathrm{monotonically}\:\mathrm{increasing} \\ $$
Question Number 216706 Answers: 1 Comments: 4
$$\int\:\:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{sin}\left({z}\right)\mathrm{cos}\left({z}\right)}= \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\mathrm{d}{z}}{\mathrm{sec}^{\mathrm{2}} \left({z}\right)+\mathrm{tan}\left({z}\right)}\:\mathrm{multiply}\:\mathrm{sec}^{\mathrm{2}} \left({z}\right) \\ $$$$\mathrm{sec}^{\mathrm{2}} \left({z}\right)=\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left({z}\right) \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\:\mathrm{d}{z}}{\mathrm{1}+\mathrm{tan}\left({z}\right)+\mathrm{tan}^{\mathrm{2}} \left({z}\right)} \\ $$$${s}=\mathrm{tan}\left({z}\right) \\ $$$$\mathrm{d}{s}=\mathrm{sec}^{\mathrm{2}} \left({z}\right)\mathrm{d}{z} \\ $$$$\int\:\:\frac{\mathrm{d}{s}}{{s}^{\mathrm{2}} +{s}+\mathrm{1}}=\int\:\:\frac{\mathrm{d}{s}}{\left({s}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}\:=\:\int\:\:\:\frac{\mathrm{d}{q}}{{q}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${q}={s}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\int\:\frac{\mathrm{1}}{{w}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{w} \\ $$$${w}=\frac{\mathrm{2}{q}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left({w}\right)+{C}\:\rightarrow\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{q}}{\:\sqrt{\mathrm{3}}}\right)+{C} \\ $$$${q}={s}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left({s}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right)+{C} \\ $$$${s}=\mathrm{tan}\left({z}\right) \\ $$$$\therefore\:\int\:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{sin}\left({z}\right)\mathrm{cos}\left({z}\right)}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2tan}\left({z}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)+{C} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:=\frac{\mathrm{4}\pi}{\:\sqrt{\mathrm{3}}} \\ $$
Question Number 216703 Answers: 1 Comments: 0
Question Number 216698 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:^{\mathrm{3}} \sqrt{{x}+\mathrm{1}}\:−^{\mathrm{3}} \sqrt{{x}}\:\overset{?} {=}\:\mathrm{0} \\ $$
Question Number 216695 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{1}+{sinxcosx}}\overset{?} {=}\:\frac{\mathrm{4}\pi{ln}\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\: \\ $$
Question Number 216694 Answers: 4 Comments: 0
$${Prove}\:{that}\:\:^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}\:−^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}\:=\mathrm{1} \\ $$
Question Number 216679 Answers: 0 Comments: 0
Question Number 216672 Answers: 0 Comments: 0
Question Number 216670 Answers: 3 Comments: 0
Question Number 216664 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{non}-\mathrm{negative}\:\mathrm{integers}: \\ $$$$\:\:\:\mathrm{n}^{\mathrm{3}} =\mathrm{3m}\left(\mathrm{m}+\mathrm{2n}+\mathrm{1}\right) \\ $$
Question Number 216659 Answers: 1 Comments: 0
Question Number 216656 Answers: 0 Comments: 0
Question Number 216655 Answers: 1 Comments: 0
Question Number 216647 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left({acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}\right)^{{n}} } \\ $$
Question Number 216646 Answers: 3 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{an}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{such}\:\mathrm{that} \\ $$$${ab}+{bc}+{ac}+{abc}=\mathrm{4},\:\mathrm{show}\:\mathrm{using}\:\mathrm{vieta}'\mathrm{s}\:\mathrm{relations}\:\mathrm{that} \\ $$$$\frac{{a}}{{a}+\mathrm{2}}+\frac{{b}}{{b}+\mathrm{2}}+\frac{{c}}{{c}+\mathrm{2}}=\mathrm{1} \\ $$
Question Number 216645 Answers: 0 Comments: 0
Question Number 216665 Answers: 1 Comments: 1
Question Number 216638 Answers: 1 Comments: 1
$$\:\:\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{LHopital}} \\ $$$$\:\:\:\boldsymbol{{rule}}\:\boldsymbol{{evalute}}\: \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{ln}}\left(\mathrm{1}−{x}\right)−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{cox}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)} \\ $$
Question Number 216630 Answers: 2 Comments: 0
the circles x² + y² -4x -2y +3 =0 and x² +y² + 2x +4y -3 =0 touches each other Find the coordinates of the point of contact
Question Number 216621 Answers: 2 Comments: 0
Question Number 216618 Answers: 2 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\mathrm{2}\pi} \:\sqrt{\mathrm{1}\:\:−\:\:\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\:\mathrm{dx} \\ $$$$\mathrm{Is}\:\mathrm{the}\:\mathrm{answer}\:\:\mathrm{0}\:\:\:\mathrm{or}\:\:\:\:\mathrm{4}???? \\ $$
Question Number 216615 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sin}\:{n}\pi{x}\:{J}_{\mathrm{0}} \left({j}_{\mathrm{0}{m}} {x}\right){dx} \\ $$
Question Number 216613 Answers: 0 Comments: 1
$$\int_{{a}} ^{\:{x}} \frac{\mathrm{1}−{b}\mathrm{ln}\:\frac{{x}}{{a}}}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−{b}\mathrm{ln}\:\frac{{x}}{{a}}\right)^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 216607 Answers: 1 Comments: 0
Question Number 216596 Answers: 1 Comments: 0
$$\underset{\mathcal{D}} {\int\int}\:\:\:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{\mathrm{cos}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathcal{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]×\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$
Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78
Terms of Service
Privacy Policy
Contact: info@tinkutara.com