Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 74

Question Number 209026    Answers: 1   Comments: 0

Question Number 209024    Answers: 3   Comments: 1

Question Number 209023    Answers: 2   Comments: 1

Question Number 209021    Answers: 1   Comments: 7

Hello, I present to you an interesting combinatorics question: A group of people from k families should be seated around a round table, with a_{i} number of people in the i family. Each family member must sit together (i.e. no family member can sit between other family members). There are l spaces around the table. There are seats (l>k). How many ways can we seat k number of families around a round table under these conditions.

$$ \\ $$Hello, I present to you an interesting combinatorics question: A group of people from k families should be seated around a round table, with a_{i} number of people in the i family. Each family member must sit together (i.e. no family member can sit between other family members). There are l spaces around the table. There are seats (l>k). How many ways can we seat k number of families around a round table under these conditions.

Question Number 209016    Answers: 2   Comments: 0

Question Number 209015    Answers: 3   Comments: 0

Question Number 208999    Answers: 3   Comments: 0

Question Number 208980    Answers: 1   Comments: 0

please . find 2^(11001^(666) ) mod 23 thanks.

$${please}\:.\:\:\:\:\:{find}\:\:\mathrm{2}^{\mathrm{11001}^{\mathrm{666}} } {mod}\:\mathrm{23}\:\:\:\:\:\:\:\:{thanks}. \\ $$

Question Number 208976    Answers: 4   Comments: 0

Question Number 208975    Answers: 0   Comments: 0

Question Number 208974    Answers: 4   Comments: 0

Question Number 208973    Answers: 1   Comments: 5

Question Number 208972    Answers: 3   Comments: 0

Question Number 208970    Answers: 5   Comments: 0

Question Number 208969    Answers: 5   Comments: 0

Question Number 208968    Answers: 0   Comments: 0

hello everyone. Im writing a project on the topic“ Solution of Nonlinear partial differential equation using charpits methods” curently writing chapter 2 but I′m a little bit confused about what ih should include in my theoretical framework. Any ideas?

$$ \\ $$$$\mathrm{hello}\:\mathrm{everyone}.\:\mathrm{Im}\:\mathrm{writing}\:\mathrm{a}\:\mathrm{project}\:\:\mathrm{on}\:\mathrm{the}\:\mathrm{topic}``\:\mathrm{Solution}\:\mathrm{of} \\ $$$$\mathrm{Nonlinear}\:\mathrm{partial}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{using}\:\mathrm{charpits}\:\mathrm{methods}'' \\ $$$$\mathrm{curently}\:\mathrm{writing}\:\mathrm{chapter}\:\mathrm{2}\:\mathrm{but}\:\mathrm{I}'\mathrm{m}\:\mathrm{a}\:\mathrm{little}\:\mathrm{bit}\:\mathrm{confused}\:\mathrm{about}\:\mathrm{what}\:\mathrm{ih} \\ $$$$\mathrm{should}\:\mathrm{include}\:\mathrm{in}\:\mathrm{my}\:\mathrm{theoretical}\:\mathrm{framework}.\:\mathrm{Any}\:\mathrm{ideas}? \\ $$

Question Number 208962    Answers: 1   Comments: 3

Question Number 208959    Answers: 5   Comments: 0

If z = − (1/2) + ((√3)/2) i Find (z^4 + 2z)∙(z^3 + z) = ?

$$\mathrm{If}\:\:\:\boldsymbol{\mathrm{z}}\:=\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\:+\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\boldsymbol{\mathrm{i}} \\ $$$$\mathrm{Find}\:\:\:\left(\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{2z}\right)\centerdot\left(\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{z}\right)\:=\:? \\ $$

Question Number 208951    Answers: 1   Comments: 0

2^(2024) : 2024 = ... (Remainder = ?)

$$\mathrm{2}^{\mathrm{2024}} \::\:\mathrm{2024}\:=\:...\:\left(\mathrm{Remainder}\:=\:?\right) \\ $$

Question Number 208945    Answers: 1   Comments: 0

4 cos^2 x − 4 cos^2 3x cos x + cos^2 3x = 0 [ 0 ; (π/2) ] Find: x = ?

$$\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{x}\:−\:\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{3x}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{3x}\:=\:\mathrm{0} \\ $$$$\left[\:\mathrm{0}\:;\:\frac{\pi}{\mathrm{2}}\:\right] \\ $$$$\mathrm{Find}:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 208943    Answers: 1   Comments: 0

Question Number 208940    Answers: 1   Comments: 0

Question Number 208931    Answers: 1   Comments: 0

Question Number 208913    Answers: 3   Comments: 0

Question Number 208912    Answers: 0   Comments: 1

⋐ π

$$\:\:\:\underbrace{\Subset} \underbrace{ \cancel{} }\pi \\ $$

Question Number 208909    Answers: 0   Comments: 1

soit la fonction f(x)=x^3 +x definie sur R on note g(x)=f^(−1) (x) alors que la primitive G(x)=∫_0 ^x g(t)dt

$$\:\:\:\:\:\boldsymbol{{soit}}\:\boldsymbol{{la}}\:\boldsymbol{{fonction}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{x}}\:\:\boldsymbol{{definie}} \\ $$$$\boldsymbol{{sur}}\:\mathbb{R}\:\boldsymbol{{on}}\:\boldsymbol{{note}}\:\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{f}}^{−\mathrm{1}} \left(\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{alors}}\:\boldsymbol{{que}}\:\:\boldsymbol{{la}}\:\boldsymbol{{primitive}}\:\boldsymbol{{G}}\left(\boldsymbol{{x}}\right)=\int_{\mathrm{0}} ^{\boldsymbol{{x}}} \boldsymbol{{g}}\left(\boldsymbol{{t}}\right)\boldsymbol{{dt}} \\ $$

  Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com