Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 74
Question Number 216123 Answers: 0 Comments: 1
$$\mathrm{determiner}\:\mathrm{la}\:\mathrm{surface}\:\mathrm{de} \\ $$$$\:\left[\mathrm{ADCMNFEB}\right]\:\: \\ $$
Question Number 216110 Answers: 1 Comments: 12
Question Number 216106 Answers: 2 Comments: 1
Question Number 216105 Answers: 2 Comments: 0
Question Number 216094 Answers: 0 Comments: 0
Question Number 216093 Answers: 1 Comments: 0
Question Number 216144 Answers: 4 Comments: 0
$$\mathrm{1}.\:\boldsymbol{\mathrm{Lim}}_{\mathrm{n}\rightarrow\infty} \left[\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{2}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{3}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+...+\frac{\boldsymbol{\mathrm{n}}+\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right] \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \left(\frac{\mathrm{3}\boldsymbol{\mathrm{sin}}\mathrm{5}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}\right)^{\frac{\mathrm{1}−\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }} \\ $$
Question Number 216078 Answers: 0 Comments: 7
$${see}\:{comments} \\ $$
Question Number 216077 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left\{\frac{−\:{px}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:+\:{p}}{{x}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:−\:\mathrm{1}}\right\}^{\frac{\mathrm{1}\:−\:{x}}{\mathrm{1}\:−\:\sqrt{{x}}}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$
Question Number 216076 Answers: 1 Comments: 0
$$\:\:\:\frac{\lfloor\frac{\mathrm{x}}{\mathrm{3}}\:\rfloor}{\lfloor\:\frac{\mathrm{x}}{\mathrm{4}}\:\rfloor}\:=\:\frac{\mathrm{21}}{\mathrm{16}}\:;\:\mathrm{x}=? \\ $$
Question Number 216074 Answers: 2 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:{y}=\mid\mathrm{sin}\:{x}\mid+\mid\mathrm{sin}\:\mathrm{2}{x}\mid. \\ $$
Question Number 216060 Answers: 2 Comments: 4
Question Number 216058 Answers: 0 Comments: 5
Question Number 216056 Answers: 0 Comments: 0
Question Number 216055 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$
Question Number 216050 Answers: 1 Comments: 0
$$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{N} \\ $$$$\mathrm{lcd}\left(\mathrm{x};\mathrm{y}\right)=\mathrm{72} \\ $$$$\mathrm{lcd}\left(\mathrm{x};\mathrm{z}\right)=\mathrm{600} \\ $$$$\mathrm{lcd}\left(\mathrm{y};\mathrm{z}\right)=\mathrm{900} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{1}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}.\left(\mathrm{x};\mathrm{y};\mathrm{z}\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:... \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\mathrm{5}\left.\:\:\:\:\:\mathrm{b}\right)\mathrm{16}\:\:\:\:\:\mathrm{c}\right)\mathrm{24}\:\:\:\:\:\mathrm{d}\right)\mathrm{27}\:\:\:\:\:\mathrm{e}\right)\mathrm{64} \\ $$
Question Number 216046 Answers: 2 Comments: 0
$${x}\:=\:{bz}\:+\:{cy},\:{y}\:=\:{cx}\:+\:{az}\:\mathrm{and}\:{z}\:=\:{bx}\:+\:{ay} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{2}{abc}\:=\:\mathrm{1}. \\ $$
Question Number 216042 Answers: 1 Comments: 2
$$\left({i}\right)\:\:\:\int\mathrm{sec}\:^{\mathrm{5}} \theta{d}\theta \\ $$$$\left({ii}\right)\:\:\int\:\frac{\sqrt{\mathrm{tan}\:\theta}\:{d}\theta}{\mathrm{cos}\:\theta} \\ $$
Question Number 216033 Answers: 2 Comments: 0
Question Number 216032 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$
Question Number 216016 Answers: 1 Comments: 0
Question Number 216014 Answers: 1 Comments: 0
$$\underset{\Delta{x}\rightarrow{cos}\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}^{\mathrm{3}} \left(\Delta{x}+{x}\right)−{sin}^{\mathrm{3}} {x}}{\mathrm{2}^{−\mathrm{1}} \centerdot\Delta{x}}=? \\ $$
Question Number 216010 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$${ax}^{\mathrm{2}} \:+\:{bxy}\:+\:{cy}^{\mathrm{2}} \:=\:{bx}^{\mathrm{2}} \:+\:{cxy}\:+\:{ay}^{\mathrm{2}} \:=\:{d}. \\ $$
Question Number 215999 Answers: 2 Comments: 0
$${if}\:{the}\:{fraction}\:\frac{{m}^{\mathrm{2}} +\mathrm{25}{m}}{{m}+\mathrm{1}}\:\:{is}\:{reductible}.\:{how}\:{many}\:{values}\:{does}\:{m}\:\:{take}\:{if}\:{is}\:{a}\:\mathrm{2}\:{digit}\:\:{number}?\:{thanks} \\ $$
Question Number 215995 Answers: 1 Comments: 0
$$\int\int\underset{{D}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:\mathrm{dv}\:=\:? \\ $$$$\mathrm{D}\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} <{z} \\ $$
Question Number 215994 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{z}\in\mathbb{C}:\:\:\:\:\:\mid{z}^{{z}} \mid=\mathrm{1} \\ $$
Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78
Terms of Service
Privacy Policy
Contact: info@tinkutara.com