Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 734

Question Number 136167    Answers: 1   Comments: 0

Given that one of the value for the 5^(th) root of a complex number is −1+i. Find the another four values.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{value}\:\mathrm{for}\:\mathrm{the}\:\mathrm{5}^{\mathrm{th}} \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{is}\:−\mathrm{1}+{i}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{another}\:\mathrm{four}\:\mathrm{values}. \\ $$

Question Number 136165    Answers: 1   Comments: 3

Find the equation of ellipse with F_1 (1,2) , F_2 (3,4) and 2a = 2(√3)

$${Find}\:{the}\:{equation}\:{of}\:{ellipse}\:{with} \\ $$$${F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{2}\right)\:,\:{F}_{\mathrm{2}} \left(\mathrm{3},\mathrm{4}\right)\:{and}\:\mathrm{2}{a}\:=\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$

Question Number 136161    Answers: 1   Comments: 0

How do I find the sum of 1+3x+6x^2 +10x^3 +15x^4 +.......∞, where −1<x<1 ? Please Help..

$${How}\:{do}\:{I}\:{find}\:{the}\:{sum}\:{of} \\ $$$$\:\:\mathrm{1}+\mathrm{3}{x}+\mathrm{6}{x}^{\mathrm{2}} +\mathrm{10}{x}^{\mathrm{3}} +\mathrm{15}{x}^{\mathrm{4}} +.......\infty,\:\:{where}\:−\mathrm{1}<{x}<\mathrm{1}\:? \\ $$$$\:\:{Please}\:{Help}.. \\ $$

Question Number 136157    Answers: 1   Comments: 0

Question Number 136156    Answers: 1   Comments: 0

Question Number 136154    Answers: 1   Comments: 0

Question Number 136151    Answers: 0   Comments: 0

If A and B toss n+1 and n fairs coins respectively, what is the probability P_n that A gets more heads than B

$${If}\:{A}\:{and}\:{B}\:{toss}\:{n}+\mathrm{1}\:{and}\:{n}\:{fairs} \\ $$$${coins}\:{respectively},\:{what}\:{is}\:{the} \\ $$$${probability}\:{P}_{{n}} \:{that}\:{A}\:{gets}\:{more} \\ $$$${heads}\:{than}\:{B} \\ $$

Question Number 136146    Answers: 0   Comments: 0

Question Number 136145    Answers: 0   Comments: 0

Question Number 136138    Answers: 2   Comments: 0

What is max and min value of y=4−x^2 −(√(1−x^2 )) ?

$${What}\:{is}\:{max}\:{and}\:{min}\:{value} \\ $$$${of}\:{y}=\mathrm{4}−{x}^{\mathrm{2}} −\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:? \\ $$

Question Number 136137    Answers: 1   Comments: 0

Question Number 136136    Answers: 1   Comments: 0

Question Number 136132    Answers: 1   Comments: 0

Find a series for (x^2 /(tanh (xπ)tan (xπ)))

$${Find}\:{a}\:{series}\:{for}\:\frac{{x}^{\mathrm{2}} }{\mathrm{tanh}\:\left({x}\pi\right)\mathrm{tan}\:\left({x}\pi\right)} \\ $$

Question Number 136124    Answers: 1   Comments: 0

Given a quadratic function f(x) =3-4k-(k+3) x-x^2, where k is a constant, is always negative when p

$$ \\ $$Given a quadratic function f(x) =3-4k-(k+3) x-x^2, where k is a constant, is always negative when p<k<q. What is the value of p and q?

Question Number 136123    Answers: 3   Comments: 0

(({ (((12−x)^2 ))^(1/3) +(((12−x)(x−3)))^(1/3) +(√((x−3)^2 )) }^2 )/( ((12−x))^(1/3) +((x−3))^(1/3) )) = ((49)/3)

$$\frac{\left\{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{12}−{x}\right)^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}}]{\left(\mathrm{12}−{x}\right)\left({x}−\mathrm{3}\right)}\:+\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:\right\}^{\mathrm{2}} }{\:\sqrt[{\mathrm{3}}]{\mathrm{12}−{x}}\:+\sqrt[{\mathrm{3}}]{{x}−\mathrm{3}}}\:=\:\frac{\mathrm{49}}{\mathrm{3}} \\ $$

Question Number 136122    Answers: 1   Comments: 0

2(cos x+cos 2x) +sin 2x(1+2cos x)=2sin x

$$\mathrm{2}\left(\mathrm{cos}\:{x}+\mathrm{cos}\:\mathrm{2}{x}\right)\:+\mathrm{sin}\:\mathrm{2}{x}\left(\mathrm{1}+\mathrm{2cos}\:{x}\right)=\mathrm{2sin}\:{x}\: \\ $$

Question Number 136121    Answers: 1   Comments: 0

3 cos x = 13 sin (((2x)/3)) + 17 cos ((x/3))

$$\mathrm{3}\:\mathrm{cos}\:{x}\:=\:\mathrm{13}\:\mathrm{sin}\:\left(\frac{\mathrm{2}{x}}{\mathrm{3}}\right)\:+\:\mathrm{17}\:\mathrm{cos}\:\left(\frac{{x}}{\mathrm{3}}\right) \\ $$

Question Number 136105    Answers: 0   Comments: 4

Question Number 136104    Answers: 0   Comments: 0

((cos(1+(√((43)/3)))π)/1^2 )+((cos(1+(√((43)/3)))2π)/2^2 )+((cos(1+(√((43)/3)))3π)/3^2 )+...=aπ Find a

$$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+...={a}\pi \\ $$$${Find}\:{a} \\ $$

Question Number 139506    Answers: 1   Comments: 6

Question Number 139505    Answers: 1   Comments: 1

Find the greatest value of x^2 y^3 when 3x+4y=5

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \: \\ $$$$\mathrm{when}\:\mathrm{3x}+\mathrm{4y}=\mathrm{5} \\ $$

Question Number 136100    Answers: 0   Comments: 0

I.∫xe^(sinx) dx

$$\mathrm{I}.\int\mathrm{xe}^{\mathrm{sinx}} \mathrm{dx} \\ $$

Question Number 136098    Answers: 1   Comments: 0

I).compute Σ_(k=0) ^(1000) C_(2000) ^(2k) .

$$\left.\mathrm{I}\right).\mathrm{compute}\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{1000}} {\sum}}\mathrm{C}_{\mathrm{2000}} ^{\mathrm{2k}} . \\ $$

Question Number 136094    Answers: 1   Comments: 5

.... nice calculus.... in AB^Δ C :: cos(A)cos(B)cos(C)=(1/9) find the value of: cos^2 (A)+cos^2 (B)+cos^2 (C)=?

$$\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:\:\:\:{calculus}.... \\ $$$$\:\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:::\:{cos}\left({A}\right){cos}\left({B}\right){cos}\left({C}\right)=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\:\:\:{find}\:\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}^{\mathrm{2}} \left({A}\right)+{cos}^{\mathrm{2}} \left({B}\right)+{cos}^{\mathrm{2}} \left({C}\right)=? \\ $$

Question Number 136093    Answers: 0   Comments: 0

.....nice calculus..... calculate :: lim_(n→∞) (1/( (√n))) Σ_(k=1 ) ^n cos^(2n) (((kπ)/n))=??

$$\:\:\:\:\:\:\:\:\:\:\:.....{nice}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:\:{calculate}\::: \\ $$$$\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\:\sqrt{{n}}}\:\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{cos}^{\mathrm{2}{n}} \left(\frac{{k}\pi}{{n}}\right)=?? \\ $$$$ \\ $$

Question Number 136083    Answers: 0   Comments: 0

  Pg 729      Pg 730      Pg 731      Pg 732      Pg 733      Pg 734      Pg 735      Pg 736      Pg 737      Pg 738   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com