Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 732
Question Number 145615 Answers: 0 Comments: 2
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{abc}\:=\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} }{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{b}^{\mathrm{3}} }{\left({b}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{c}^{\mathrm{3}} }{\left({c}+\mathrm{1}\right)^{\mathrm{2}} }\:\geqslant\frac{{a}+{b}+{c}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 145602 Answers: 5 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\mathrm{Advanced}\:.........\mathrm{Calculus}..... \\ $$$$\:\:\:\mathrm{Q}::\:\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|}{\:{i}\:::\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Ln}\:\left(\:\Gamma\:\left(\:\mathrm{2}\:+\:{x}\:\right)\:\right){dx}\:=\:?\:\:\:\:}\\{\:{ii}\:::\:\:\:\Omega\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\:{n}\:\left(\:\mathrm{2}{n}\:+\:\mathrm{3}\:\right)}\:=\:?}\\\hline\end{array} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{m}.{n}.{july}.\mathrm{1970}.....\:\:\:\:\blacksquare \\ $$$$ \\ $$
Question Number 145626 Answers: 0 Comments: 2
Question Number 145588 Answers: 3 Comments: 0
Question Number 145583 Answers: 0 Comments: 0
$${une}\:{urne}\:{contient}\:{N}\:{boules}\:{dont} \\ $$$${M}\:{boules}\:{blanches}\:{et}\:{N}−{M}\:{boule}\:{noires} \\ $$$${on}\:{tire}\:{successivement}\:{et}\:{sans}\:{remise} \\ $$$${n}\:{boules}\:{de}\:{l}'{urne}. \\ $$$${soit}\:{A}_{{i}} :''{prelever}\:{une}\:{boules}\:{noires}\:{au}\:{ieme} \\ $$$${tirage}'' \\ $$$${calculer}\:{P}\left({A}_{{i}} \right) \\ $$
Question Number 145580 Answers: 0 Comments: 1
Question Number 145578 Answers: 1 Comments: 0
$${y}''\_{y}={xsin}\mathrm{2}{x} \\ $$$${solve}\:{the}\:{differential}\:{eqn}.. \\ $$
Question Number 145577 Answers: 2 Comments: 1
Question Number 145575 Answers: 2 Comments: 0
Question Number 145573 Answers: 1 Comments: 0
Question Number 145609 Answers: 1 Comments: 1
Question Number 145571 Answers: 0 Comments: 0
Question Number 145634 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{s}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{n}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{explicite}\:\mathrm{s}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 145633 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{approximat}\:\mathrm{value}\right) \\ $$
Question Number 145654 Answers: 2 Comments: 0
$$\mathrm{4}{cosy}−\mathrm{3}{secy}=\mathrm{2}{tany} \\ $$$${Find}\:{y} \\ $$
Question Number 146212 Answers: 1 Comments: 0
$$\mathrm{K}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx} \\ $$
Question Number 145636 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 145635 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 145557 Answers: 1 Comments: 0
Question Number 145549 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{y}\:=\:{f}\left({x}\right)\:\mathrm{where}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)\:.\: \\ $$
Question Number 145548 Answers: 2 Comments: 0
$${if}\:\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{24}\:\:{and}\:\:\mathrm{2}^{\boldsymbol{{y}}} =\mathrm{36} \\ $$$${find}\:\:\:\frac{\mathrm{4}^{\left(\boldsymbol{{x}}-\mathrm{1}\right)\centerdot\boldsymbol{{y}}} }{\mathrm{4}^{\boldsymbol{{x}}} }\:=\:? \\ $$
Question Number 145547 Answers: 1 Comments: 0
$${I}_{{m},{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{{m}} \right)^{{n}} {dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{I}_{{m},{n}} \left({mn}+\mathrm{1}\right)\:=\:{I}_{{m},{n}−\mathrm{1}} \\ $$
Question Number 145534 Answers: 1 Comments: 0
Question Number 145531 Answers: 3 Comments: 0
$$\underset{{n}\rightarrow\infty} {{lim}sin}^{\mathrm{2}} \pi\:\sqrt{{n}^{\mathrm{2}} +{n}}\:=\:? \\ $$
Question Number 145530 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mid{a}\mid\:+\:\mid{b}\mid}{\mid{a}\:+\:{b}\mid}\right)_{\boldsymbol{{min}}} =\:? \\ $$
Question Number 145528 Answers: 0 Comments: 0
$$\mathrm{State}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\:{y}^{\mathrm{2}} \:=\:\frac{\mathrm{3}{x}^{\mathrm{2}} }{{x}−\mathrm{4}} \\ $$
Pg 727 Pg 728 Pg 729 Pg 730 Pg 731 Pg 732 Pg 733 Pg 734 Pg 735 Pg 736
Terms of Service
Privacy Policy
Contact: info@tinkutara.com