Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 732
Question Number 145768 Answers: 0 Comments: 0
$${x};{y};{z};{t}\in\mathbb{Z}^{+} \\ $$$$\begin{cases}{{xy}\:+\:{zt}\:=\:\mathrm{38}}\\{{xz}\:+\:{yt}\:=\:\mathrm{34}}\\{{xt}\:+\:{yz}\:=\:\mathrm{43}}\end{cases}\:\:\Rightarrow\:{x}+{y}+{z}+{t}=? \\ $$
Question Number 145766 Answers: 0 Comments: 0
Question Number 145760 Answers: 0 Comments: 0
Question Number 145759 Answers: 1 Comments: 2
Question Number 145756 Answers: 2 Comments: 0
Question Number 145809 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+.....=−\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Question Number 145751 Answers: 1 Comments: 4
Question Number 145750 Answers: 0 Comments: 0
$$\mathrm{find}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 145749 Answers: 1 Comments: 0
$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{log}\left(\mathrm{tan}\left(\mathrm{x}\right)\right)\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 145748 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{arctan}\left(\mathrm{2sinx}\right) \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 145763 Answers: 1 Comments: 0
$${if}\:{z}=\left(\frac{\mathrm{3}+{i}\:\mathrm{sin}\:\theta}{\mathrm{4}−{i}\:\mathrm{cos}\:\theta}\right){is}\:{purely}\:{real}\:{and}\: \\ $$$$\frac{\Pi}{\mathrm{2}}<\theta<\Pi\:{then}\:{find}\:{arg}\left(\mathrm{sin}\:\theta\:+{i}\:\mathrm{cos}\:\theta\right)? \\ $$
Question Number 145746 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$
Question Number 145745 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)}\mathrm{dx} \\ $$
Question Number 145755 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{abc}\:=\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} +\mathrm{1}\right)\left({c}^{\mathrm{2}} +\mathrm{1}\right)}{\left({a}+\mathrm{1}\right)\left({b}+\mathrm{1}\right)\left({c}+\mathrm{1}\right)}\:\leqslant\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right) \\ $$
Question Number 145729 Answers: 0 Comments: 0
$$\mathrm{Dl}\:\:\:\mathrm{of}\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}\left(\mathrm{1}+\mathrm{x}\right)}\mathrm{e}^{\frac{\mathrm{3}}{\mathrm{2x}}} .. \\ $$
Question Number 145724 Answers: 5 Comments: 1
Question Number 145723 Answers: 1 Comments: 0
Question Number 145722 Answers: 0 Comments: 0
Question Number 145721 Answers: 0 Comments: 0
$${if}\:\:{a};{b}\in\mathbb{N}\:\:;\:\:{a}\neq{b}\:\:{and}\:\:{a}+{b}=\mathrm{2}{x} \\ $$$${find}\:\:\left({a}\centerdot{b}\right)_{\boldsymbol{{m}}{ax}} =? \\ $$
Question Number 145718 Answers: 0 Comments: 1
$${F}_{\mathrm{1}} \:=\:\mathrm{3}\:{N}\:\:;\:\:{F}_{\mathrm{2}} \:=\:\mathrm{4}\:{N}\:\:;\:{F}_{\mathrm{3}} \:=\:\mathrm{6}\:{N} \\ $$$${F}_{\boldsymbol{{max}}} \:\:-\:\:{F}_{\boldsymbol{{min}}} =\:? \\ $$
Question Number 145716 Answers: 0 Comments: 0
$${can}\:{we}\:{use}\:{the}\:{pearson}'{s}\:{correlation}\:{and}\:{chi}−{square} \\ $$$${test}\:{for}\:{hypothesis}\:{interchangably}? \\ $$$${both}\:{test}\:{is}\:{used}\:{to}\:{find}\:{significant}\:{relationship} \\ $$$${between}\:{two}\:{variables}. \\ $$
Question Number 145715 Answers: 4 Comments: 1
Question Number 146130 Answers: 0 Comments: 0
$$\:\:\left(\mathrm{2}^{\mathrm{k}} +\mathrm{1}\right)\left(\mathrm{3}^{\mathrm{k}} +\mathrm{2}\right)\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{k}+\mathrm{5}\right) \\ $$$$\:\mathrm{min}\:\mathrm{k}=?\:\:\:\left(\mathrm{k}\in\mathbb{N}\right) \\ $$
Question Number 145701 Answers: 2 Comments: 1
Question Number 145687 Answers: 0 Comments: 0
$${if}\:\:{q}\geqslant\mathrm{3}\:;\:{a}>-\mathrm{1}\:\:{then}: \\ $$$$\left(\mathrm{1}+{a}\right)^{\boldsymbol{{q}}} \:\geqslant\:\left(\mathrm{1}+\mathrm{2}{a}\right)\left(\mathrm{1}+{a}\right)^{\boldsymbol{{q}}-\mathrm{2}} \:\geqslant\:\mathrm{1}+{qa} \\ $$
Question Number 145683 Answers: 1 Comments: 0
$$\:\frac{\mathrm{3}\:\sqrt[{\sqrt{\mathrm{4}}}]{\mathrm{360}}\:−\mathrm{2}\:\sqrt[{!\mathrm{3}}]{\mathrm{162}}}{\:\sqrt{\mathrm{10}}−\sqrt{\mathrm{2}}}\:=? \\ $$
Pg 727 Pg 728 Pg 729 Pg 730 Pg 731 Pg 732 Pg 733 Pg 734 Pg 735 Pg 736
Terms of Service
Privacy Policy
Contact: info@tinkutara.com