Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 73
Question Number 213838 Answers: 1 Comments: 1
Question Number 213835 Answers: 1 Comments: 0
Question Number 213821 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$
Question Number 213818 Answers: 1 Comments: 1
Question Number 213803 Answers: 2 Comments: 2
Question Number 213802 Answers: 3 Comments: 0
Question Number 213797 Answers: 1 Comments: 0
Question Number 213796 Answers: 4 Comments: 0
Question Number 213817 Answers: 0 Comments: 1
Question Number 213791 Answers: 2 Comments: 2
$$\mathrm{If}\:\:\:\mathrm{x}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:=\:\:\mathrm{10} \\ $$$$\mathrm{Find}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:+\:\:\mathrm{3}\:\:=\:\:? \\ $$
Question Number 213790 Answers: 0 Comments: 2
$$\mathrm{So}\:\mathrm{Weird}...... \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$${J}_{−\nu} \left({t}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu} \left({t}\right)\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left(−\mathrm{1}\right)^{\nu} \left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{But}\:\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}\:\mathrm{is}\:\mathrm{not}\:\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{why}....?\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\: \\ $$$$\mathrm{why}\:\mathrm{Blue}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}.... \\ $$
Question Number 213776 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$
Question Number 213764 Answers: 1 Comments: 0
Question Number 213759 Answers: 1 Comments: 0
Question Number 213757 Answers: 0 Comments: 0
Question Number 213756 Answers: 1 Comments: 0
Question Number 213751 Answers: 2 Comments: 3
$$\mathrm{m}\:;\:\mathrm{n}\:\in\:\mathbb{Z}_{+} \\ $$$$\mathrm{2m}^{\mathrm{2}} \:+\:\mathrm{n}^{\mathrm{2}} \:−\:\mathrm{mn}\:=\:\mathrm{54} \\ $$$$ \\ $$$$\mathrm{1}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$\mathrm{2}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$................ \\ $$
Question Number 213745 Answers: 5 Comments: 0
Question Number 213744 Answers: 1 Comments: 0
Question Number 213741 Answers: 0 Comments: 1
$$\sqrt{\mathrm{1}−\mathrm{sin}} \\ $$
Question Number 213738 Answers: 1 Comments: 0
Question Number 213735 Answers: 2 Comments: 0
Question Number 213726 Answers: 1 Comments: 0
$$\mathrm{ax}\:=\:\mathrm{by}\:=\:\mathrm{cz}\:=\:\mathrm{36} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{y}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{z}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:=\:? \\ $$
Question Number 213725 Answers: 3 Comments: 0
$${please}\:{prove}\:\frac{\mathrm{1}}{{x}}\:=\:{x}^{−\mathrm{1}} \\ $$
Question Number 213724 Answers: 0 Comments: 1
Question Number 213721 Answers: 3 Comments: 0
$$\boldsymbol{\mathrm{Resoudre}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{systeme}}\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{equations}}: \\ $$$$\begin{cases}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{xy}}=\mathrm{84}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:\:\:\:\:=\mathrm{25}}\end{cases} \\ $$
Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77
Terms of Service
Privacy Policy
Contact: info@tinkutara.com