Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 729
Question Number 145780 Answers: 1 Comments: 0
$${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\: \\ $$$${generated}\:{by}\:{the}\:{region}\:{bounded}\:{by} \\ $$$${y}=\sqrt{{x}}\:,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:{X}−{axis} \\ $$
Question Number 145779 Answers: 1 Comments: 0
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}} +{e}^{−{t}} −\mathrm{2}\right)\frac{{dt}}{\mathrm{1}−{cosx}} \\ $$
Question Number 145777 Answers: 2 Comments: 0
$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 145776 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{{x}} {cosxdx} \\ $$
Question Number 145775 Answers: 2 Comments: 0
$$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{5}}}{dx} \\ $$
Question Number 145772 Answers: 0 Comments: 0
$${a};{b};{c}>\mathrm{0}\:;\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2}\:{prove}: \\ $$$$\left({a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} \right)^{\mathrm{3}} \:\geqslant\:\left({a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{c}^{\mathrm{5}} \right)^{\mathrm{4}} \\ $$
Question Number 145774 Answers: 1 Comments: 0
$${find}\:{the}\:{area}\:{bounded}\:{by}\:{y}=\mathrm{2}{x},\:{y}=\frac{{x}}{\mathrm{2}}\:{and}?{xy}=\mathrm{2} \\ $$
Question Number 145773 Answers: 1 Comments: 0
Question Number 145769 Answers: 1 Comments: 1
$${find}\:{x}\:{if}\:\:\mathrm{2}^{{x}} +\mathrm{2}^{\mathrm{3}{x}} =\mathrm{16} \\ $$
Question Number 145768 Answers: 0 Comments: 0
$${x};{y};{z};{t}\in\mathbb{Z}^{+} \\ $$$$\begin{cases}{{xy}\:+\:{zt}\:=\:\mathrm{38}}\\{{xz}\:+\:{yt}\:=\:\mathrm{34}}\\{{xt}\:+\:{yz}\:=\:\mathrm{43}}\end{cases}\:\:\Rightarrow\:{x}+{y}+{z}+{t}=? \\ $$
Question Number 145766 Answers: 0 Comments: 0
Question Number 145760 Answers: 0 Comments: 0
Question Number 145759 Answers: 1 Comments: 2
Question Number 145756 Answers: 2 Comments: 0
Question Number 145809 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+.....=−\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Question Number 145751 Answers: 1 Comments: 4
Question Number 145750 Answers: 0 Comments: 0
$$\mathrm{find}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 145749 Answers: 1 Comments: 0
$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{log}\left(\mathrm{tan}\left(\mathrm{x}\right)\right)\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 145748 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{arctan}\left(\mathrm{2sinx}\right) \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 145763 Answers: 1 Comments: 0
$${if}\:{z}=\left(\frac{\mathrm{3}+{i}\:\mathrm{sin}\:\theta}{\mathrm{4}−{i}\:\mathrm{cos}\:\theta}\right){is}\:{purely}\:{real}\:{and}\: \\ $$$$\frac{\Pi}{\mathrm{2}}<\theta<\Pi\:{then}\:{find}\:{arg}\left(\mathrm{sin}\:\theta\:+{i}\:\mathrm{cos}\:\theta\right)? \\ $$
Question Number 145746 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$
Question Number 145745 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)}\mathrm{dx} \\ $$
Question Number 145755 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{abc}\:=\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} +\mathrm{1}\right)\left({c}^{\mathrm{2}} +\mathrm{1}\right)}{\left({a}+\mathrm{1}\right)\left({b}+\mathrm{1}\right)\left({c}+\mathrm{1}\right)}\:\leqslant\:\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right) \\ $$
Question Number 145729 Answers: 0 Comments: 0
$$\mathrm{Dl}\:\:\:\mathrm{of}\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}\left(\mathrm{1}+\mathrm{x}\right)}\mathrm{e}^{\frac{\mathrm{3}}{\mathrm{2x}}} .. \\ $$
Question Number 145724 Answers: 5 Comments: 1
Question Number 145723 Answers: 1 Comments: 0
Pg 724 Pg 725 Pg 726 Pg 727 Pg 728 Pg 729 Pg 730 Pg 731 Pg 732 Pg 733
Terms of Service
Privacy Policy
Contact: info@tinkutara.com