the probability density function with two continous random
variable X and Y is a follows :
f(x,y) = {_(0 , x other) ^(2x + 2y , 0 < x < 1, 0 < y < 1)
determine the correlation coefficient
between X and Y!
Let g:R→R be given by g(x) = 3 + 4x .Prove by induction
that, for all positive integers n,
g^n (x) = (4^n −1) + 4^n (x).
If for every positive integer k, we inteprete g^(−k) as the inverse
of the function g^k .Prove that the above formula holds alsl
for all negative integers n.
une urne contient N boules dont
M boules blanches et N−M boule noires
on tire successivement et sans remise
n boules de l′urne.
soit A_i :′′prelever une boules noires au ieme
tirage′′
calculer P(A_i )