Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 727

Question Number 145373    Answers: 1   Comments: 0

Question Number 145370    Answers: 0   Comments: 0

There are two circles , C of radius 1 and C_r of radius r which intersect on a plain At each of the two intersecting points on the circumferences of C and C_r ,the tangent to C and that to C_r form an angle 120° outside of C and C_r . Fill in the blanks with the answers to the following questions (1) Express the distance d between the centers of C and C_r in terms of r (2) Calculate the value of r at which d in (1) attains the minimum (3) in case(2) express the area of the intersection of C and C_r in terms of the constant π

$$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{circles}\:,\:\mathrm{C}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \: \\ $$$$\mathrm{of}\:\mathrm{radius}\:\mathrm{r}\:\mathrm{which}\:\mathrm{intersect}\:\mathrm{on}\:\mathrm{a}\:\mathrm{plain}\: \\ $$$$\mathrm{At}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{intersecting} \\ $$$$\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumferences}\:\mathrm{of} \\ $$$$\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \:,\mathrm{the}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C}\:\mathrm{and} \\ $$$$\mathrm{that}\:\mathrm{to}\:\mathrm{C}_{\mathrm{r}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{120}°\:\mathrm{outside} \\ $$$$\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} .\:\mathrm{Fill}\:\mathrm{in}\:\mathrm{the}\:\mathrm{blanks}\: \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{questions}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Express}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{d}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{r}\: \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{r}\:\mathrm{at}\: \\ $$$$\mathrm{which}\:\mathrm{d}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\mathrm{attains}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{in}\:\mathrm{case}\left(\mathrm{2}\right)\:\mathrm{express}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant}\:\pi \\ $$

Question Number 145363    Answers: 3   Comments: 0

Without L′Hopital rule lim_(x→π/4) (((√2) cos x−1)/(cot x−1)) =?

$$\:\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{rule} \\ $$$$\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x}−\mathrm{1}}{\mathrm{cot}\:\mathrm{x}−\mathrm{1}}\:=? \\ $$

Question Number 145361    Answers: 0   Comments: 0

∫_0 ^(+∞) ((t^2 +3t+3)/((t+1)^3 )) e^(−t) cos(t) dt

$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{t}^{\mathrm{2}} +\mathrm{3t}+\mathrm{3}}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{e}^{−\mathrm{t}} \mathrm{cos}\left(\mathrm{t}\right)\:\mathrm{dt} \\ $$

Question Number 145359    Answers: 1   Comments: 0

How many digits will there be in 875^(16) ?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{will}\:\mathrm{there}\:\mathrm{be} \\ $$$$\mathrm{in}\:\mathrm{875}^{\mathrm{16}} \:? \\ $$

Question Number 145358    Answers: 1   Comments: 0

Evaluate:: ∫_0 ^1 ln(1+x^2 )∙arctan(x)dx=?

$$\mathrm{Evaluate}::\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\centerdot\mathrm{arctan}\left(\mathrm{x}\right)\mathrm{dx}=? \\ $$

Question Number 145345    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (((−1)^n n)/((2n+1)!))=?

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}}{\left(\mathrm{2n}+\mathrm{1}\right)!}=? \\ $$

Question Number 145344    Answers: 2   Comments: 0

z^4 = 49 - 20(√6) ⇒ z=?

$$\boldsymbol{{z}}^{\mathrm{4}} \:=\:\mathrm{49}\:-\:\mathrm{20}\sqrt{\mathrm{6}}\:\:\Rightarrow\:\boldsymbol{{z}}=? \\ $$

Question Number 145339    Answers: 1   Comments: 0

Let f(x)=e^x cos x,Find Σ_(n=0) ^∞ ((f^((n)) (x))/2^n )=?

$$\mathrm{Let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} \mathrm{cos}\:\mathrm{x},\mathrm{Find}\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)}{\mathrm{2}^{\mathrm{n}} }=? \\ $$

Question Number 145338    Answers: 1   Comments: 0

de^ rive^ e n-ie^ me de (x^3 /(1+x^6 ))

$$\mathrm{d}\acute {\mathrm{e}riv}\acute {\mathrm{e}e}\:\:\:\mathrm{n}-\mathrm{i}\grave {\mathrm{e}me}\:\:\:\mathrm{de}\:\:\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{6}} } \\ $$

Question Number 145337    Answers: 1   Comments: 0

The Area of a square,A(t),is increased at a rate equal to its perimeter ,A(t) satisfies the differential equation (dA/dt)= A. 4A B. 2A C.−4(√A) D. 4(√A)

$$\mathrm{The}\:\mathrm{Area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square},{A}\left({t}\right),\mathrm{is}\:\mathrm{increased}\:\mathrm{at}\:\mathrm{a}\:\mathrm{rate} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{its}\:\mathrm{perimeter}\:,{A}\left({t}\right)\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\frac{{dA}}{{dt}}= \\ $$$$\mathrm{A}.\:\mathrm{4}{A}\:\:\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{2}{A}\:\:\:\:\:\:\:\:\:\mathrm{C}.−\mathrm{4}\sqrt{{A}}\:\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{4}\sqrt{{A}} \\ $$

Question Number 145336    Answers: 0   Comments: 4

Which of the following linear diophantine equations has positive solutions, A. x+ 5y = 7 B. x+5y = 3 B. x + 5y = 2 C. x+ 5y = 1

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{linear}\:\mathrm{diophantine}\:\mathrm{equations}\:\mathrm{has} \\ $$$$\mathrm{positive}\:\mathrm{solutions}, \\ $$$$\mathrm{A}.\:{x}+\:\mathrm{5}{y}\:=\:\mathrm{7} \\ $$$$\mathrm{B}.\:{x}+\mathrm{5}{y}\:=\:\mathrm{3} \\ $$$$\mathrm{B}.\:{x}\:+\:\mathrm{5}{y}\:=\:\mathrm{2} \\ $$$$\mathrm{C}.\:{x}+\:\mathrm{5}{y}\:=\:\mathrm{1} \\ $$

Question Number 145324    Answers: 2   Comments: 0

∫ (dx/(1 + x^6 )) = ?

$$\int\:\frac{{dx}}{\mathrm{1}\:+\:{x}^{\mathrm{6}} }\:=\:? \\ $$

Question Number 145319    Answers: 1   Comments: 0

# Calculus# Σ_(n=0) ^∞ (1/(n! + (n + 1 )!)) =?

$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:#\:\:\mathrm{Calculus}# \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!\:+\:\left({n}\:+\:\mathrm{1}\:\right)!}\:=? \\ $$$$ \\ $$

Question Number 145318    Answers: 1   Comments: 0

Let f:[0,1]→R be a differentiable function such that f(f(x))=x for all x∈[0,1] and f(0)=1. If n is a positive integer, evaluate the following integral: ∫_0 ^( 1) (x−f(x))^(2n) dx

$$\mathrm{Let}\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{function} \\ $$$$\mathrm{such}\:\mathrm{that}\:{f}\left({f}\left({x}\right)\right)={x}\:\mathrm{for}\:\mathrm{all}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{and} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}. \\ $$$$\mathrm{If}\:{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer},\:\mathrm{evaluate}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{integral}:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({x}−{f}\left({x}\right)\right)^{\mathrm{2}{n}} \:{dx} \\ $$

Question Number 145316    Answers: 2   Comments: 2

Question Number 145314    Answers: 0   Comments: 2

Let a,b ≥ 0 and (a+1)(b+1) = (a+b)^2 . Prove that (a+b)(√((a+1)^3 +(b+1)^3 )) ≤ (a+1)^2 +(b+1)^2 ≤ (1/2)[(a+1)^3 +(b+1)^3 ]

$$\mathrm{Let}\:{a},{b}\:\geqslant\:\mathrm{0}\:\mathrm{and}\:\left({a}+\mathrm{1}\right)\left({b}+\mathrm{1}\right)\:=\:\left({a}+{b}\right)^{\mathrm{2}} \:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\left({a}+{b}\right)\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{3}} +\left({b}+\mathrm{1}\right)^{\mathrm{3}} }\:\leqslant\:\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({b}+\mathrm{1}\right)^{\mathrm{2}} \:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}\left[\left({a}+\mathrm{1}\right)^{\mathrm{3}} +\left({b}+\mathrm{1}\right)^{\mathrm{3}} \right] \\ $$

Question Number 145309    Answers: 0   Comments: 0

Question Number 145304    Answers: 1   Comments: 0

1+((3x)/(1!)) +((5x^2 )/(2!))+((7x^3 )/(3!))+((9x^4 )/(4!))+...+∞=?

$$\:\mathrm{1}+\frac{\mathrm{3x}}{\mathrm{1}!}\:+\frac{\mathrm{5x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{\mathrm{7x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{9x}^{\mathrm{4}} }{\mathrm{4}!}+...+\infty=? \\ $$

Question Number 145305    Answers: 1   Comments: 2

Re^ soudre (((8/(sin^2 (x))) + 1)/((1/(cos^2 (x))) + tan^2 (x))) = cotan^2 (x)+(4/3)

$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\frac{\frac{\mathrm{8}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\:\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\:\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)}\:=\:\mathrm{cotan}^{\mathrm{2}} \left(\mathrm{x}\right)+\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Question Number 145300    Answers: 1   Comments: 0

yy′ = x e^(x/y)

$$\:\:\:\:\:\:\:\mathrm{yy}'\:=\:\mathrm{x}\:\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}} \: \\ $$

Question Number 145294    Answers: 2   Comments: 0

Given a polynomial p(x)=x^4 +4x^3 +(2p+2)x^2 +(2p+5q+2)x+3q+2r. If p(x)= (x^3 +2x^2 +8x+6)Q(x) then what the value of (p+2q)r .

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{polynomial}\: \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} +\left(\mathrm{2p}+\mathrm{2}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{2p}+\mathrm{5q}+\mathrm{2}\right)\mathrm{x}+\mathrm{3q}+\mathrm{2r}. \\ $$$$\mathrm{If}\:\mathrm{p}\left(\mathrm{x}\right)=\:\left(\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{6}\right)\mathrm{Q}\left(\mathrm{x}\right) \\ $$$$\:\mathrm{then}\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\left(\mathrm{p}+\mathrm{2q}\right)\mathrm{r}\:. \\ $$

Question Number 145290    Answers: 2   Comments: 0

Question Number 145286    Answers: 3   Comments: 0

Given the function f(x) =((6x^2 −x^3 ))^(1/3) Find the oblique assymptote(s) of the function.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function} \\ $$$$\:{f}\left({x}\right)\:=\sqrt[{\mathrm{3}}]{\mathrm{6}{x}^{\mathrm{2}} −{x}^{\mathrm{3}} } \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{oblique}\:\mathrm{assymptote}\left(\mathrm{s}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}. \\ $$

Question Number 145285    Answers: 0   Comments: 1

x=2−2+2−2+2−…+2−2+2=2

$${x}=\mathrm{2}−\mathrm{2}+\mathrm{2}−\mathrm{2}+\mathrm{2}−\ldots+\mathrm{2}−\mathrm{2}+\mathrm{2}=\mathrm{2} \\ $$

Question Number 145282    Answers: 1   Comments: 0

  Pg 722      Pg 723      Pg 724      Pg 725      Pg 726      Pg 727      Pg 728      Pg 729      Pg 730      Pg 731   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com