Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 723
Question Number 146242 Answers: 1 Comments: 0
$$\mathrm{4}\:{sin}\left(\mathrm{50}°\right)\:-\:\frac{\mathrm{1}}{{cos}\left(\mathrm{20}°\right)}\:=\:? \\ $$
Question Number 146236 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{3}{x}\:+\:\mathrm{1}}{{x}}\:{dx}\:=\:? \\ $$
Question Number 146235 Answers: 2 Comments: 0
$${if}\:\:\:{arg}\:{z}_{\mathrm{1}} \:=\:\frac{\mathrm{4}\pi}{\mathrm{3}}\:\:\:{and}\:\:\:{arg}\:{z}_{\mathrm{1}} ^{\mathrm{2}} \:\centerdot\:{z}\:=\:\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${find}\:\:\:{arg}\:{z}\:=\:? \\ $$
Question Number 146233 Answers: 1 Comments: 1
Question Number 146230 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left({x}\right)}\:-\:\mathrm{1}\:+\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=\:\mathrm{1}\:\Rightarrow\:{x}=? \\ $$
Question Number 146227 Answers: 2 Comments: 0
$${tg}^{\mathrm{2}} \left({x}\right)\:-\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=\:\mathrm{1}\:\Rightarrow\:{x}=? \\ $$
Question Number 146224 Answers: 2 Comments: 0
Question Number 146202 Answers: 3 Comments: 0
$$\int\frac{{lnx}}{{x}−\mathrm{1}}{dx}=....??? \\ $$$${La}\:{primitive} \\ $$
Question Number 146201 Answers: 1 Comments: 0
$${Solve}\:{for}\:{natural}\:{numbers}\:{the}\:{equation}: \\ $$$$\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{15}{y}^{\mathrm{2}} \:=\:\mathrm{5}{z}^{\mathrm{2}} \:+\:{t}^{\mathrm{2}} \\ $$
Question Number 146215 Answers: 3 Comments: 0
$$\int\:\frac{{dx}}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:=\:? \\ $$
Question Number 146196 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{4}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{5}} } \\ $$
Question Number 146197 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 146194 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \mathrm{5}^{\mathrm{n}} } \\ $$
Question Number 146193 Answers: 2 Comments: 0
$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{y}^{'} \:+\:\mathrm{y}=\mathrm{xe}^{−\mathrm{x}} \\ $$
Question Number 146183 Answers: 1 Comments: 1
Question Number 146181 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \:\left({n}+\mathrm{1}\:\right)\:\left(\:{n}\:+\:\mathrm{2}\:\right)}\:=? \\ $$
Question Number 146180 Answers: 0 Comments: 0
$$\mathrm{theorem}:\:\:\:\mathrm{statement}:\:\mathrm{The}\:\mathrm{right}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{congruent}. \\ $$
Question Number 146176 Answers: 0 Comments: 0
Question Number 146174 Answers: 0 Comments: 0
$${calculer}\:{lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right)\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{{x}} } \\ $$
Question Number 146173 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\mathrm{w}\:=\:\frac{\mathrm{N}!}{\mathrm{n}_{\mathrm{1}} !\:\mathrm{n}_{\mathrm{2}} !} \\ $$
Question Number 146172 Answers: 0 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{book}\:\mathrm{where}\:\mathrm{the}\:\mathrm{topic}\:``\:\boldsymbol{\mathrm{inverse}} \\ $$$$\boldsymbol{\mathrm{trigonometric}}\:\boldsymbol{\mathrm{function}}''\:\mathrm{has}\:\mathrm{given}\:\mathrm{in}\:\mathrm{full}\: \\ $$$$\mathrm{details}\:? \\ $$
Question Number 146170 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right)\mathrm{tan}\:\left(\frac{\pi}{{x}}\right)=? \\ $$
Question Number 146164 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{calulate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\frac{{n}}{\mathrm{2}}\:} }{\:\mathrm{2}^{\:{n}} }\:=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:.......{m}.{n}. \\ $$
Question Number 146158 Answers: 1 Comments: 1
Question Number 146157 Answers: 3 Comments: 0
Question Number 146156 Answers: 0 Comments: 0
Pg 718 Pg 719 Pg 720 Pg 721 Pg 722 Pg 723 Pg 724 Pg 725 Pg 726 Pg 727
Terms of Service
Privacy Policy
Contact: info@tinkutara.com