Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 722

Question Number 145580    Answers: 0   Comments: 1

Question Number 145578    Answers: 1   Comments: 0

y′′_y=xsin2x solve the differential eqn..

$${y}''\_{y}={xsin}\mathrm{2}{x} \\ $$$${solve}\:{the}\:{differential}\:{eqn}.. \\ $$

Question Number 145577    Answers: 2   Comments: 1

Question Number 145575    Answers: 2   Comments: 0

Question Number 145573    Answers: 1   Comments: 0

Question Number 145609    Answers: 1   Comments: 1

Question Number 145571    Answers: 0   Comments: 0

Question Number 145634    Answers: 2   Comments: 0

let s(x)=Σ_(n=1) ^∞ (((−1)^n )/((2x^2 +2x(√(1+x^2 ))+1)^n )) 1) explicite s(x) 2) calculate ∫_0 ^1 s(x)dx

$$\mathrm{let}\:\mathrm{s}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{n}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{explicite}\:\mathrm{s}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 145633    Answers: 0   Comments: 0

find ∫_0 ^1 e^(−x) (√(1+x^2 ))dx (approximat value)

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{approximat}\:\mathrm{value}\right) \\ $$

Question Number 145654    Answers: 2   Comments: 0

4cosy−3secy=2tany Find y

$$\mathrm{4}{cosy}−\mathrm{3}{secy}=\mathrm{2}{tany} \\ $$$${Find}\:{y} \\ $$

Question Number 146212    Answers: 1   Comments: 0

K=∫(1/( (√(1+x^3 ))))dx

$$\mathrm{K}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx} \\ $$

Question Number 145636    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((arctanx)/((1+x^2 )^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 145635    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(3x^2 ))/(1+x^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 145557    Answers: 1   Comments: 0

Question Number 145549    Answers: 1   Comments: 0

Find the equation of the asymptotes to the curve y = f(x) where f(x) = ln(((x+3)/(x−1))) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{y}\:=\:{f}\left({x}\right)\:\mathrm{where}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)\:.\: \\ $$

Question Number 145548    Answers: 2   Comments: 0

if 3^x =24 and 2^y =36 find (4^((x-1)∙y) /4^x ) = ?

$${if}\:\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{24}\:\:{and}\:\:\mathrm{2}^{\boldsymbol{{y}}} =\mathrm{36} \\ $$$${find}\:\:\:\frac{\mathrm{4}^{\left(\boldsymbol{{x}}-\mathrm{1}\right)\centerdot\boldsymbol{{y}}} }{\mathrm{4}^{\boldsymbol{{x}}} }\:=\:? \\ $$

Question Number 145547    Answers: 1   Comments: 0

I_(m,n) = ∫_0 ^1 (1−x^m )^n dx Show that I_(m,n) (mn+1) = I_(m,n−1)

$${I}_{{m},{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{{m}} \right)^{{n}} {dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{I}_{{m},{n}} \left({mn}+\mathrm{1}\right)\:=\:{I}_{{m},{n}−\mathrm{1}} \\ $$

Question Number 145534    Answers: 1   Comments: 0

Question Number 145531    Answers: 3   Comments: 0

lim_(n→∞) sin^2 π (√(n^2 +n)) = ?

$$\underset{{n}\rightarrow\infty} {{lim}sin}^{\mathrm{2}} \pi\:\sqrt{{n}^{\mathrm{2}} +{n}}\:=\:? \\ $$

Question Number 145530    Answers: 1   Comments: 0

((1/2) + ((∣a∣ + ∣b∣)/(∣a + b∣)))_(min) = ?

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mid{a}\mid\:+\:\mid{b}\mid}{\mid{a}\:+\:{b}\mid}\right)_{\boldsymbol{{min}}} =\:? \\ $$

Question Number 145528    Answers: 0   Comments: 0

State the asymptotes of the curve y^2 = ((3x^2 )/(x−4))

$$\mathrm{State}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\:{y}^{\mathrm{2}} \:=\:\frac{\mathrm{3}{x}^{\mathrm{2}} }{{x}−\mathrm{4}} \\ $$

Question Number 145525    Answers: 1   Comments: 0

Question Number 145522    Answers: 1   Comments: 0

montrer que l′ensemble des suites reelle qui verifie la relation ∀n∈N aU_(n+2) +bU_(n+1) +cU_n =0 (1) est un espace vectoriel de dimension 2 et determiner une base

$${montrer}\:{que}\:{l}'{ensemble}\:{des}\:{suites}\:{reelle}\:{qui} \\ $$$${verifie}\:{la}\:{relation}\:\forall{n}\in\mathbb{N} \\ $$$${aU}_{{n}+\mathrm{2}} +{bU}_{{n}+\mathrm{1}} +{cU}_{{n}} =\mathrm{0}\:\left(\mathrm{1}\right)\:\:{est}\:{un}\:{espace} \\ $$$${vectoriel}\:{de}\:{dimension}\:\mathrm{2} \\ $$$${et}\:{determiner}\:{une}\:{base}\: \\ $$$$ \\ $$

Question Number 145519    Answers: 0   Comments: 1

Question Number 145517    Answers: 1   Comments: 0

Find the center of mass for the thin plate bounded by curves g(x)=(x/2) and f(x)=(√x) , 0≤x≤1 .

$${Find}\:{the}\:{center}\:{of}\:{mass}\:{for}\: \\ $$$${the}\:{thin}\:{plate}\:{bounded}\:{by}\: \\ $$$${curves}\:{g}\left({x}\right)=\frac{{x}}{\mathrm{2}}\:{and}\:{f}\left({x}\right)=\sqrt{{x}} \\ $$$$,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:. \\ $$

Question Number 145516    Answers: 2   Comments: 0

f(x+y)=f(x)+f(y)+xy for all x and y fromR and f(4)=10 calculate f(1319)

$$\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{y}\right)+\mathrm{xy}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{fromR} \\ $$$$\mathrm{and}\:\mathrm{f}\left(\mathrm{4}\right)=\mathrm{10}\:\:\mathrm{calculate}\:\mathrm{f}\left(\mathrm{1319}\right) \\ $$

  Pg 717      Pg 718      Pg 719      Pg 720      Pg 721      Pg 722      Pg 723      Pg 724      Pg 725      Pg 726   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com