Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 722
Question Number 145580 Answers: 0 Comments: 1
Question Number 145578 Answers: 1 Comments: 0
$${y}''\_{y}={xsin}\mathrm{2}{x} \\ $$$${solve}\:{the}\:{differential}\:{eqn}.. \\ $$
Question Number 145577 Answers: 2 Comments: 1
Question Number 145575 Answers: 2 Comments: 0
Question Number 145573 Answers: 1 Comments: 0
Question Number 145609 Answers: 1 Comments: 1
Question Number 145571 Answers: 0 Comments: 0
Question Number 145634 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{s}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{n}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{explicite}\:\mathrm{s}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 145633 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{approximat}\:\mathrm{value}\right) \\ $$
Question Number 145654 Answers: 2 Comments: 0
$$\mathrm{4}{cosy}−\mathrm{3}{secy}=\mathrm{2}{tany} \\ $$$${Find}\:{y} \\ $$
Question Number 146212 Answers: 1 Comments: 0
$$\mathrm{K}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx} \\ $$
Question Number 145636 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 145635 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 145557 Answers: 1 Comments: 0
Question Number 145549 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{y}\:=\:{f}\left({x}\right)\:\mathrm{where}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)\:.\: \\ $$
Question Number 145548 Answers: 2 Comments: 0
$${if}\:\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{24}\:\:{and}\:\:\mathrm{2}^{\boldsymbol{{y}}} =\mathrm{36} \\ $$$${find}\:\:\:\frac{\mathrm{4}^{\left(\boldsymbol{{x}}-\mathrm{1}\right)\centerdot\boldsymbol{{y}}} }{\mathrm{4}^{\boldsymbol{{x}}} }\:=\:? \\ $$
Question Number 145547 Answers: 1 Comments: 0
$${I}_{{m},{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{{m}} \right)^{{n}} {dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{I}_{{m},{n}} \left({mn}+\mathrm{1}\right)\:=\:{I}_{{m},{n}−\mathrm{1}} \\ $$
Question Number 145534 Answers: 1 Comments: 0
Question Number 145531 Answers: 3 Comments: 0
$$\underset{{n}\rightarrow\infty} {{lim}sin}^{\mathrm{2}} \pi\:\sqrt{{n}^{\mathrm{2}} +{n}}\:=\:? \\ $$
Question Number 145530 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mid{a}\mid\:+\:\mid{b}\mid}{\mid{a}\:+\:{b}\mid}\right)_{\boldsymbol{{min}}} =\:? \\ $$
Question Number 145528 Answers: 0 Comments: 0
$$\mathrm{State}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\:{y}^{\mathrm{2}} \:=\:\frac{\mathrm{3}{x}^{\mathrm{2}} }{{x}−\mathrm{4}} \\ $$
Question Number 145525 Answers: 1 Comments: 0
Question Number 145522 Answers: 1 Comments: 0
$${montrer}\:{que}\:{l}'{ensemble}\:{des}\:{suites}\:{reelle}\:{qui} \\ $$$${verifie}\:{la}\:{relation}\:\forall{n}\in\mathbb{N} \\ $$$${aU}_{{n}+\mathrm{2}} +{bU}_{{n}+\mathrm{1}} +{cU}_{{n}} =\mathrm{0}\:\left(\mathrm{1}\right)\:\:{est}\:{un}\:{espace} \\ $$$${vectoriel}\:{de}\:{dimension}\:\mathrm{2} \\ $$$${et}\:{determiner}\:{une}\:{base}\: \\ $$$$ \\ $$
Question Number 145519 Answers: 0 Comments: 1
Question Number 145517 Answers: 1 Comments: 0
$${Find}\:{the}\:{center}\:{of}\:{mass}\:{for}\: \\ $$$${the}\:{thin}\:{plate}\:{bounded}\:{by}\: \\ $$$${curves}\:{g}\left({x}\right)=\frac{{x}}{\mathrm{2}}\:{and}\:{f}\left({x}\right)=\sqrt{{x}} \\ $$$$,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:. \\ $$
Question Number 145516 Answers: 2 Comments: 0
$$\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{y}\right)+\mathrm{xy}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{fromR} \\ $$$$\mathrm{and}\:\mathrm{f}\left(\mathrm{4}\right)=\mathrm{10}\:\:\mathrm{calculate}\:\mathrm{f}\left(\mathrm{1319}\right) \\ $$
Pg 717 Pg 718 Pg 719 Pg 720 Pg 721 Pg 722 Pg 723 Pg 724 Pg 725 Pg 726
Terms of Service
Privacy Policy
Contact: info@tinkutara.com