Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 722

Question Number 146173    Answers: 0   Comments: 0

prove that w = ((N!)/(n_1 ! n_2 !))

$$\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\mathrm{w}\:=\:\frac{\mathrm{N}!}{\mathrm{n}_{\mathrm{1}} !\:\mathrm{n}_{\mathrm{2}} !} \\ $$

Question Number 146172    Answers: 0   Comments: 0

Is there any book where the topic “ inverse trigonometric function” has given in full details ?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{book}\:\mathrm{where}\:\mathrm{the}\:\mathrm{topic}\:``\:\boldsymbol{\mathrm{inverse}} \\ $$$$\boldsymbol{\mathrm{trigonometric}}\:\boldsymbol{\mathrm{function}}''\:\mathrm{has}\:\mathrm{given}\:\mathrm{in}\:\mathrm{full}\: \\ $$$$\mathrm{details}\:? \\ $$

Question Number 146170    Answers: 2   Comments: 0

lim_(x→2) (x^2 −4)tan ((π/x))=?

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right)\mathrm{tan}\:\left(\frac{\pi}{{x}}\right)=? \\ $$

Question Number 146164    Answers: 1   Comments: 0

calulate :: S : = Σ_(n=1) ^∞ (( H_((n/2) ) )/( 2^( n) )) =? .......m.n.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{calulate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\frac{{n}}{\mathrm{2}}\:} }{\:\mathrm{2}^{\:{n}} }\:=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:.......{m}.{n}. \\ $$

Question Number 146158    Answers: 1   Comments: 1

Question Number 146157    Answers: 3   Comments: 0

Question Number 146156    Answers: 0   Comments: 0

Question Number 146155    Answers: 0   Comments: 2

lim_(n→∞) (Arcsin(x))^( n) =0 ∴ x ∈ ? Q : mr liberty

$$ \\ $$$$\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \:\left({Arcsin}\left({x}\right)\right)^{\:{n}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:{x}\:\in\:?\: \\ $$$$\:\:\:\:\:\:{Q}\::\:{mr}\:{liberty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 146154    Answers: 0   Comments: 0

Question Number 146146    Answers: 0   Comments: 1

to admin tinku tara. why can't i post in hebrew ?

$$ \\ $$to admin tinku tara. why can't i post in hebrew ?

Question Number 146141    Answers: 0   Comments: 4

An incident ray is reflected normally by a plane mirror onto a screen where it forms a bright spot. The mirror and screen are parallel and 1m apart. If the mirror is rotated through 5°, calculate the displacement of the spot

$$ \\ $$An incident ray is reflected normally by a plane mirror onto a screen where it forms a bright spot. The mirror and screen are parallel and 1m apart. If the mirror is rotated through 5°, calculate the displacement of the spot

Question Number 146150    Answers: 0   Comments: 0

(Level - 2) 10th maths assignment of polynomials by PP sir Defind upwards and downwards parabolas.

$$\:\:\:\left(\boldsymbol{\mathrm{L}}\mathrm{evel}\:-\:\mathrm{2}\right)\:\:\:\:\:\mathrm{10}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{maths}}\:\boldsymbol{\mathrm{assignment}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{polynomials}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{PP}}\:\boldsymbol{\mathrm{sir}} \\ $$$$\mathrm{Defind}\:\mathrm{upwards}\:\mathrm{and}\:\mathrm{downwards}\:\mathrm{parabolas}. \\ $$$$ \\ $$$$ \\ $$

Question Number 146147    Answers: 2   Comments: 0

Υ = ∫ (dx/(x^4 (√(x^2 −a^2 )))) =?

$$\:\Upsilon\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=? \\ $$

Question Number 146119    Answers: 3   Comments: 2

determinant (((lim_(x→0) ((√(5x^2 +4x^4 ))/(3x)) =?)),((lim_(x→0) (x^3 /( (√(x^6 +3x^7 )))) =?)))

$$\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{4}} }}{\mathrm{3}{x}}\:=?}\\{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{7}} }}\:=?}\\\hline\end{array} \\ $$

Question Number 146110    Answers: 2   Comments: 0

∫((x+1)/(2x^2 +x+1))dx

$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 146108    Answers: 0   Comments: 0

Solve in Z[X] 1) XP ′ ≡ −1 mod(X^4 +1) 2) X^3 P −P ′ ≡ 1−X^2 mod(X^4 +1) 3) P^2 −X^3 P−X^2 ≡ 0 mod(X^2 +2)

$$\:{Solve}\:\:{in}\:\mathbb{Z}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right)\:{XP}\:'\:\equiv\:−\mathrm{1}\:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{X}^{\mathrm{3}} {P}\:−{P}\:'\:\equiv\:\mathrm{1}−{X}^{\mathrm{2}} \:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{P}\:^{\mathrm{2}} −{X}^{\mathrm{3}} {P}−{X}^{\mathrm{2}} \:\:\equiv\:\mathrm{0}\:{mod}\left({X}^{\mathrm{2}} +\mathrm{2}\right) \\ $$

Question Number 151714    Answers: 0   Comments: 2

Question Number 146131    Answers: 1   Comments: 1

Question Number 146106    Answers: 2   Comments: 0

Question Number 146102    Answers: 1   Comments: 0

prove by mathmatical indiction 5+7+9+.....+(4n+1)=2n^2 +3n

$${prove}\:{by}\:{mathmatical}\:{indiction}\: \\ $$$$\mathrm{5}+\mathrm{7}+\mathrm{9}+.....+\left(\mathrm{4}{n}+\mathrm{1}\right)=\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n} \\ $$

Question Number 146100    Answers: 1   Comments: 1

Question Number 146096    Answers: 1   Comments: 0

Question Number 146090    Answers: 2   Comments: 0

∫_0 ^∞ ((sinh(at)sinh(bt))/(sinh(ct)e^(tz) ))dt= ((ab)/(c(z^2 +c^2 −a^2 −b^2 +K_(k=1) ^∞ ((−4k^2 (k^2 c^2 −a^2 )(k^2 c^2 −b^2 ))/((2k+1)(z^2 +(2k^2 +2k+1)c^2 −a^2 −b^2 ))))))

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\left(\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\left(\mathrm{2k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{1}\right)\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}\right)} \\ $$

Question Number 146091    Answers: 0   Comments: 0

Question Number 146087    Answers: 1   Comments: 0

1)find U_n =∫_0 ^1 x^n e^(−2x) dx 2)nature of Σ U_n ?

$$\left.\mathrm{1}\right)\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\ $$

Question Number 146085    Answers: 0   Comments: 1

f(x,y)=x−(√(x+2y)) 1)condition on x and y to have f symetric 2) find (∂f/∂x) ,(∂f/∂y) ,(∂^2 f/(∂x∂y)) ,(∂^2 f/(∂y∂x)) 3) find (∂^2 f/∂^2 x) and (∂^2 f/∂^2 y)

$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}−\sqrt{\mathrm{x}+\mathrm{2y}} \\ $$$$\left.\mathrm{1}\right)\mathrm{condition}\:\mathrm{on}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{to}\:\mathrm{have}\:\mathrm{f}\:\mathrm{symetric} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:,\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:,\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{x}\partial\mathrm{y}}\:,\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{y}\partial\mathrm{x}} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{x}}\:\mathrm{and}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{y}} \\ $$

  Pg 717      Pg 718      Pg 719      Pg 720      Pg 721      Pg 722      Pg 723      Pg 724      Pg 725      Pg 726   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com