Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 72

Question Number 216207    Answers: 0   Comments: 2

Prove that any kind of equation should have atleast one root. (Algebric fundamental theorem)

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{any}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{should} \\ $$$$\mathrm{have}\:\mathrm{atleast}\:\mathrm{one}\:\mathrm{root}.\:\left(\mathrm{Algebric}\:\right. \\ $$$$\left.\mathrm{fundamental}\:\mathrm{theorem}\right) \\ $$

Question Number 216202    Answers: 4   Comments: 0

prove : sin(a+b)=sin(a)cos(b)+sin(b)cos(a)

$${prove}\::\: \\ $$$${sin}\left({a}+{b}\right)={sin}\left({a}\right){cos}\left({b}\right)+{sin}\left({b}\right){cos}\left({a}\right) \\ $$

Question Number 216201    Answers: 1   Comments: 0

Question Number 216188    Answers: 3   Comments: 0

Question Number 216178    Answers: 2   Comments: 0

B = ((3^4 + 3^2 + 1)/(3^7 - 3)) + ((4^4 + 4^2 + 1)/(4^7 - 4)) + ... + ((10^4 + 10^2 + 1)/(10^7 - 1)) Find: B + (1/(220)) = ?

$$\mathrm{B}\:=\:\frac{\mathrm{3}^{\mathrm{4}} \:+\:\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{1}}{\mathrm{3}^{\mathrm{7}} \:-\:\mathrm{3}}\:+\:\frac{\mathrm{4}^{\mathrm{4}} \:+\:\mathrm{4}^{\mathrm{2}} \:+\:\mathrm{1}}{\mathrm{4}^{\mathrm{7}} \:-\:\mathrm{4}}\:+\:...\:+\:\frac{\mathrm{10}^{\mathrm{4}} \:+\:\mathrm{10}^{\mathrm{2}} \:+\:\mathrm{1}}{\mathrm{10}^{\mathrm{7}} \:-\:\mathrm{1}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{B}\:+\:\frac{\mathrm{1}}{\mathrm{220}}\:=\:? \\ $$

Question Number 216183    Answers: 1   Comments: 0

Question Number 216180    Answers: 4   Comments: 0

Question Number 216164    Answers: 2   Comments: 0

Question Number 216162    Answers: 1   Comments: 0

Question Number 216161    Answers: 1   Comments: 0

Question Number 216153    Answers: 1   Comments: 0

Question Number 216139    Answers: 2   Comments: 3

Question Number 216123    Answers: 0   Comments: 1

determiner la surface de [ADCMNFEB]

$$\mathrm{determiner}\:\mathrm{la}\:\mathrm{surface}\:\mathrm{de} \\ $$$$\:\left[\mathrm{ADCMNFEB}\right]\:\: \\ $$

Question Number 216110    Answers: 1   Comments: 12

Question Number 216106    Answers: 2   Comments: 1

Question Number 216105    Answers: 2   Comments: 0

Question Number 216094    Answers: 0   Comments: 0

Question Number 216093    Answers: 1   Comments: 0

Question Number 216144    Answers: 4   Comments: 0

1. Lim_(n→∞) [(1/n^2 )+(2/n^2 )+(3/n^2 )+...+((n+1)/n^2 )] 2. lim_(x→0) (((3sin5x)/x))^((1−cos4x)/x^2 )

$$\mathrm{1}.\:\boldsymbol{\mathrm{Lim}}_{\mathrm{n}\rightarrow\infty} \left[\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{2}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+\frac{\mathrm{3}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }+...+\frac{\boldsymbol{\mathrm{n}}+\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right] \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} \left(\frac{\mathrm{3}\boldsymbol{\mathrm{sin}}\mathrm{5}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}\right)^{\frac{\mathrm{1}−\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }} \\ $$

Question Number 216078    Answers: 0   Comments: 7

see comments

$${see}\:{comments} \\ $$

Question Number 216077    Answers: 1   Comments: 0

Find the largest value of the non negative integer p for which lim_(x→1) {((− px + sin(x − 1) + p)/(x + sin(x − 1) − 1))}^((1 − x)/(1 − (√x))) = (1/4) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left\{\frac{−\:{px}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:+\:{p}}{{x}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:−\:\mathrm{1}}\right\}^{\frac{\mathrm{1}\:−\:{x}}{\mathrm{1}\:−\:\sqrt{{x}}}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$

Question Number 216076    Answers: 1   Comments: 0

((⌊(x/3) ⌋)/(⌊ (x/4) ⌋)) = ((21)/(16)) ; x=?

$$\:\:\:\frac{\lfloor\frac{\mathrm{x}}{\mathrm{3}}\:\rfloor}{\lfloor\:\frac{\mathrm{x}}{\mathrm{4}}\:\rfloor}\:=\:\frac{\mathrm{21}}{\mathrm{16}}\:;\:\mathrm{x}=? \\ $$

Question Number 216074    Answers: 2   Comments: 0

find the maximum of y=∣sin x∣+∣sin 2x∣.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:{y}=\mid\mathrm{sin}\:{x}\mid+\mid\mathrm{sin}\:\mathrm{2}{x}\mid. \\ $$

Question Number 216060    Answers: 2   Comments: 4

Question Number 216058    Answers: 0   Comments: 5

Question Number 216056    Answers: 0   Comments: 0

  Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com