Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 72
Question Number 214000 Answers: 0 Comments: 4
$$\:\:\mathrm{Let}\:\mathrm{y}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{diff}\:\mathrm{eq}. \\ $$$$\:\:\mathrm{y}\:'=\:\frac{\mathrm{cos}\:\mathrm{x}+\mathrm{y}}{\mathrm{cos}\:\mathrm{x}}\:,\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\mathrm{Find}\:\mathrm{y}\left(\frac{\pi}{\mathrm{6}}\right). \\ $$
Question Number 213999 Answers: 1 Comments: 1
$$\int\int...\int_{\:\mathcal{D}} \:\:{e}^{−\left({z}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} ...+{z}_{{n}} ^{\mathrm{2}} \right)} \mathrm{da} \\ $$$$\mathcal{D}=\underset{\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{times}}} {\left[\mathrm{0},\infty\right)×\left[\mathrm{0},\infty\right)......\left[\mathrm{0},\infty\right)} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{−\mathrm{sin}^{\mathrm{2}} \left({z}\right)} \mathrm{d}{z} \\ $$$$\mathrm{help} \\ $$
Question Number 213992 Answers: 0 Comments: 0
Question Number 213991 Answers: 0 Comments: 0
Question Number 213962 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx} \\ $$
Question Number 213960 Answers: 1 Comments: 1
Question Number 213956 Answers: 2 Comments: 0
Question Number 213953 Answers: 1 Comments: 0
Question Number 213948 Answers: 0 Comments: 0
$$\mathrm{evaluate}. \\ $$$$\mathrm{1}.\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:\:{e}^{−\boldsymbol{{i}}\left({t}−\mathrm{sin}\left({t}\right)\right)} \mathrm{d}{t} \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\:\mathrm{a}} \int_{\mathrm{0}} ^{\:\mathrm{a}} \:\:\sqrt{{u}^{\mathrm{2}} +{v}^{\mathrm{2}} −\mathrm{6}{u}+\mathrm{9}}\:\mathrm{d}{u}\mathrm{d}{v} \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\:{e}^{\mathrm{cos}\left({t}\right)} \mathrm{cos}\left(\mathrm{2}{t}+\mathrm{sin}\left({t}\right)\right)\mathrm{d}{t} \\ $$$$\mathrm{4}.\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{sin}\left(\mathrm{3}{z}\right)}{{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{5}}\:\mathrm{d}{z} \\ $$$$\mathrm{5}.\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{cos}\left(\theta\right)}\:\mathrm{d}\theta \\ $$
Question Number 213945 Answers: 3 Comments: 0
Question Number 213944 Answers: 1 Comments: 0
Question Number 213939 Answers: 2 Comments: 1
Question Number 213923 Answers: 3 Comments: 0
Question Number 213920 Answers: 1 Comments: 1
Question Number 213934 Answers: 0 Comments: 3
$$\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:{R}} \frac{\left({d}\theta\right)\left({dr}\right)\left({a}+{r}\mathrm{cos}\:\theta\right)}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ar}\mathrm{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:={f}\left({a},{R}\right) \\ $$$${Find}\:{f}\left({a},\:{R}\right). \\ $$
Question Number 213894 Answers: 0 Comments: 0
Question Number 213893 Answers: 1 Comments: 2
$$\int_{\:−\pi} ^{\:\:\pi} \:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}=¿¿\:\:\: \\ $$
Question Number 213890 Answers: 2 Comments: 0
Question Number 213888 Answers: 2 Comments: 5
Question Number 213887 Answers: 1 Comments: 0
$$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$
Question Number 213871 Answers: 0 Comments: 5
Question Number 213884 Answers: 2 Comments: 3
Question Number 213861 Answers: 1 Comments: 0
Question Number 213859 Answers: 0 Comments: 5
Question Number 213844 Answers: 3 Comments: 0
$$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\ $$
Question Number 213841 Answers: 1 Comments: 0
$$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\ $$
Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75 Pg 76
Terms of Service
Privacy Policy
Contact: info@tinkutara.com