Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 72

Question Number 214000    Answers: 0   Comments: 4

Let y(x) be the solution of diff eq. y ′= ((cos x+y)/(cos x)) , y(0)=0 Find y((π/6)).

$$\:\:\mathrm{Let}\:\mathrm{y}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{diff}\:\mathrm{eq}. \\ $$$$\:\:\mathrm{y}\:'=\:\frac{\mathrm{cos}\:\mathrm{x}+\mathrm{y}}{\mathrm{cos}\:\mathrm{x}}\:,\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\mathrm{Find}\:\mathrm{y}\left(\frac{\pi}{\mathrm{6}}\right). \\ $$

Question Number 213999    Answers: 1   Comments: 1

∫∫...∫_( D) e^(−(z_1 ^2 +z_2 ^2 ...+z_n ^2 )) da D=[0,∞)×[0,∞)......[0,∞)_(n times) ∫_0 ^( π) e^(−sin^2 (z)) dz help

$$\int\int...\int_{\:\mathcal{D}} \:\:{e}^{−\left({z}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} ...+{z}_{{n}} ^{\mathrm{2}} \right)} \mathrm{da} \\ $$$$\mathcal{D}=\underset{\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{times}}} {\left[\mathrm{0},\infty\right)×\left[\mathrm{0},\infty\right)......\left[\mathrm{0},\infty\right)} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{−\mathrm{sin}^{\mathrm{2}} \left({z}\right)} \mathrm{d}{z} \\ $$$$\mathrm{help} \\ $$

Question Number 213992    Answers: 0   Comments: 0

Question Number 213991    Answers: 0   Comments: 0

Question Number 213962    Answers: 1   Comments: 0

∫((x^4 −1)/(x(x^4 −5)(x^5 −5x+1)))dx

$$\int\frac{{x}^{\mathrm{4}} −\mathrm{1}}{{x}\left({x}^{\mathrm{4}} −\mathrm{5}\right)\left({x}^{\mathrm{5}} −\mathrm{5}{x}+\mathrm{1}\right)}{dx} \\ $$

Question Number 213960    Answers: 1   Comments: 1

Question Number 213956    Answers: 2   Comments: 0

Question Number 213953    Answers: 1   Comments: 0

Question Number 213948    Answers: 0   Comments: 0

evaluate. 1. (1/π)∫_0 ^( π) e^(−i(t−sin(t))) dt 2. ∫_0 ^( a) ∫_0 ^( a) (√(u^2 +v^2 −6u+9)) dudv 3. ∫_0 ^( π/2) e^(cos(t)) cos(2t+sin(t))dt 4. ∫_(−∞) ^( ∞) ((sin(3z))/(z^2 +2z+5)) dz 5.∫_0 ^( 2π) (1/(2+cos(θ))) dθ

$$\mathrm{evaluate}. \\ $$$$\mathrm{1}.\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:\:{e}^{−\boldsymbol{{i}}\left({t}−\mathrm{sin}\left({t}\right)\right)} \mathrm{d}{t} \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\:\mathrm{a}} \int_{\mathrm{0}} ^{\:\mathrm{a}} \:\:\sqrt{{u}^{\mathrm{2}} +{v}^{\mathrm{2}} −\mathrm{6}{u}+\mathrm{9}}\:\mathrm{d}{u}\mathrm{d}{v} \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\:{e}^{\mathrm{cos}\left({t}\right)} \mathrm{cos}\left(\mathrm{2}{t}+\mathrm{sin}\left({t}\right)\right)\mathrm{d}{t} \\ $$$$\mathrm{4}.\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{sin}\left(\mathrm{3}{z}\right)}{{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{5}}\:\mathrm{d}{z} \\ $$$$\mathrm{5}.\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{cos}\left(\theta\right)}\:\mathrm{d}\theta \\ $$

Question Number 213945    Answers: 3   Comments: 0

Question Number 213944    Answers: 1   Comments: 0

Question Number 213939    Answers: 2   Comments: 1

Question Number 213923    Answers: 3   Comments: 0

Question Number 213920    Answers: 1   Comments: 1

Question Number 213934    Answers: 0   Comments: 3

∫_(−π/2) ^( π/2) ∫_0 ^( R) (((dθ)(dr)(a+rcos θ))/((r^2 +a^2 +2arcos θ)^(3/2) )) =f(a,R) Find f(a, R).

$$\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:{R}} \frac{\left({d}\theta\right)\left({dr}\right)\left({a}+{r}\mathrm{cos}\:\theta\right)}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ar}\mathrm{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:={f}\left({a},{R}\right) \\ $$$${Find}\:{f}\left({a},\:{R}\right). \\ $$

Question Number 213894    Answers: 0   Comments: 0

Question Number 213893    Answers: 1   Comments: 2

∫_( −π) ^( π) (dz/(1+3cos^2 (z)))=¿¿

$$\int_{\:−\pi} ^{\:\:\pi} \:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}=¿¿\:\:\: \\ $$

Question Number 213890    Answers: 2   Comments: 0

Question Number 213888    Answers: 2   Comments: 5

Question Number 213887    Answers: 1   Comments: 0

Find amplitude, period, maximum and minimum value for function f(x)= 6 tan ((1/5)x)−8

$$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$

Question Number 213871    Answers: 0   Comments: 5

Question Number 213884    Answers: 2   Comments: 3

Question Number 213861    Answers: 1   Comments: 0

Question Number 213859    Answers: 0   Comments: 5

Question Number 213844    Answers: 3   Comments: 0

∫_(−1) ^1 ∫_0 ^(√(1−x^2 )) ∫_(√(x^2 +y^2 )) ^(√(2−x^2 −y^2 )) (√(x^2 +y^2 +z^2 )) dzdydx

$$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\ $$

Question Number 213841    Answers: 1   Comments: 0

Find the vertical asymptots of , f(x)= tan((( π)/(2x + 2)) ) in [ 0 , 4 ] −−−−−−−−−−−−−

$$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\ $$

  Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com