If α and β are roots of the equation 2x^2 +ax+b=0,
then one of the roots of the equation 2(αx+β)^2 +
a(αx+β)+b=0 is
(A) 0 (B) ((α+2b)/α^2 )
(C) ((aα+b)/(2α^2 )) (D) ((aα−2b)/(2α^2 ))
ab=c
let (a−p)(b−q)=0
⇒ c−(aq+bp)+pq=0
q=((bp−c)/(p−a))
say 4×2=8
(4−3)(2−((6−8)/(−1)))=1×0=0
And if q=b
p=((ab−c)/(2b))=0
And if p+q=c
(p−a)(c−p)=bp−c
p^2 −(a+c−b)p+c(1−a)=0
2p=(a+c−b)±(√((a+c−b)^2 −4c(1−a)))
________________________