Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 717
Question Number 138355 Answers: 0 Comments: 1
Question Number 138350 Answers: 3 Comments: 0
$$\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{8}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right) \\ $$
Question Number 138348 Answers: 0 Comments: 1
Question Number 138338 Answers: 1 Comments: 1
Question Number 138330 Answers: 2 Comments: 0
Question Number 138329 Answers: 3 Comments: 0
Question Number 138320 Answers: 1 Comments: 0
Question Number 138317 Answers: 1 Comments: 1
Question Number 138316 Answers: 0 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}+\sqrt{\frac{{ax}}{{ax}+\mathrm{8}}}\:\:\:\:\:\:\:\:,{x}\in\left(\mathrm{0},\infty\right) \\ $$$$\forall\:{a}\in\left(\mathrm{0},\infty\right),{show}\:\mathrm{1}<{f}\left({x}\right)<\mathrm{2}. \\ $$
Question Number 138315 Answers: 3 Comments: 0
$$\int_{−\infty} ^{\:+\infty} \frac{\mathrm{cos}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{use}\:\mathrm{feynmann}\:\mathrm{trick} \\ $$
Question Number 138336 Answers: 1 Comments: 1
Question Number 138335 Answers: 1 Comments: 0
$$\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{4}} +\mathrm{1}}=? \\ $$
Question Number 138384 Answers: 1 Comments: 0
$${find}\:{the}\:{singular}\:{point}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\frac{{e}^{{z}} }{{z}^{\mathrm{2}} } \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\frac{{sin}\left({z}\right)}{{z}} \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 138302 Answers: 2 Comments: 0
$${if}\:\:\mathrm{tan}^{\mathrm{2}} {x}=\mathrm{1}+\mathrm{2tan}^{\mathrm{2}} {y} \\ $$$${show}\:{that} \\ $$$$\mathrm{cos2}{x}+\mathrm{sin}^{\mathrm{2}} {y}=\mathrm{0} \\ $$
Question Number 138299 Answers: 2 Comments: 0
Question Number 138296 Answers: 3 Comments: 0
$$\int\:\frac{{dx}}{{x}^{\mathrm{4}} \sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\:=? \\ $$
Question Number 138295 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{Simplify}}\::\:{for}\:{n}\:\in\:\mathbb{N}^{\ast} ,\:\:{S}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\:\frac{\mathrm{3}{k}+\mathrm{8}}{{k}\left({k}+\mathrm{2}\right)\mathrm{2}^{{k}} }\:. \\ $$
Question Number 138283 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:......{advanced}\:\:\:...........\:\:{calculus}...... \\ $$$$\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right).{arctan}\left({x}\right)}{{x}^{\mathrm{2}} }{dx}= \\ $$$$\:{proof}::: \\ $$$$\:\:\:\boldsymbol{\phi}\underset{\langle{substitution}\rangle} {\overset{{x}={tan}\left(\theta\right)} {=}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\theta\right)\right).\theta}{{tan}^{\mathrm{2}} \left(\theta\right)}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\theta\right)\right){d}\theta \\ $$$$\overset{\langle{simplification}\rangle} {=}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\theta.{ln}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left(\theta\right)}\right)}{{sin}^{\mathrm{2}} \left(\theta\right)}{d}\theta \\ $$$$\:\:\:\:\:\:\:=−\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\theta.{ln}\left({cos}\left(\theta\right)\right.}{{sin}^{\mathrm{2}} \left(\theta\right)}{d}\theta \\ $$$$\:\:\:\:\:\overset{{i}.{b}.{p}} {=}\mathrm{2}\left\{\left[\left({cot}\left(\theta\right).\theta.{ln}\left({cos}\left(\theta\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} −\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \left({cot}\left(\theta\right).\left[{ln}\left({cos}\left(\theta\right)\right)−\theta.{tan}\left(\theta\right)\right]{d}\theta\right.\right.\right. \\ $$$$\:\:\:\:\:\:=\mathrm{2}.\frac{\pi}{\mathrm{4}}.{ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)−\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {cot}\left(\theta\right).{ln}\left({cos}\left(\theta\right)\right){d}\theta+\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \theta{d}\theta \\ $$$$\:\:\:\:\:\:=\frac{−\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\Phi+\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{cos}\left(\theta\right)}{{sin}\left(\theta\right)}.{ln}\left(\mathrm{1}−{sin}^{\mathrm{2}} \left(\theta\right)\right){d}\theta \\ $$$$\:\:\:\overset{{sin}\left(\theta\right)={y}} {=}\:\int_{\mathrm{0}} ^{\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}−{y}^{\mathrm{2}} \right)}{{y}}{dy}=−\int_{\mathrm{0}} ^{\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{y}^{\mathrm{2}{n}−\mathrm{1}} }{{n}}{dy} \\ $$$$\:\:\:\:\:\:=−\Sigma\left[\frac{{y}^{\mathrm{2}{n}} }{\mathrm{2}{n}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} =\frac{−\mathrm{1}}{\mathrm{2}}\:{li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:=\frac{−\mathrm{1}}{\mathrm{2}}\left\{\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right\}=\frac{−\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)... \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\boldsymbol{\phi}=\frac{−\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\:\:\:\:\:.........\:\:\:\:\boldsymbol{\phi}\:=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{12}\pi}{\mathrm{48}}{ln}\left(\mathrm{2}\right)+\frac{\mathrm{12}}{\mathrm{48}}\:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\:..... \\ $$$$\:\:\:\:\:\:\:\:\:\:........\boldsymbol{\phi}=\frac{\mathrm{1}}{\mathrm{48}}\left\{\mathrm{5}\pi^{\mathrm{2}} −\mathrm{12}\pi{ln}\left(\mathrm{2}\right)+\mathrm{12}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 138280 Answers: 0 Comments: 2
$$\mathrm{x}^{\mathrm{x}+\mathrm{4}} =\mathrm{32}\:\:\:\:\mathrm{solution}\:\mathrm{method}? \\ $$
Question Number 138278 Answers: 1 Comments: 0
Question Number 138277 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} } \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\mathrm{dxdy} \\ $$
Question Number 138275 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left(\mathrm{2x}+\mathrm{3y}\right)\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\int\int_{\left.\right]\left.\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \left(\mathrm{2x}+\mathrm{3y}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$
Question Number 138276 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int\int_{\left[\mathrm{0},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\frac{\mathrm{dxdy}}{\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{3y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{A}_{\mathrm{n}} \\ $$
Question Number 138240 Answers: 3 Comments: 0
$$\:\left({x}−\mathrm{1}\right)\frac{{dy}}{{dx}}\:+{xy}\:=\:\mathrm{2}{xe}^{−{x}} \\ $$
Question Number 138257 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{calculate}}\::\: \\ $$$$\int\int_{\mathrm{A}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:{with}\:\mathrm{A}=\left\{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\leqslant\:\mathrm{1}\right\} \\ $$
Question Number 138254 Answers: 0 Comments: 10
Pg 712 Pg 713 Pg 714 Pg 715 Pg 716 Pg 717 Pg 718 Pg 719 Pg 720 Pg 721
Terms of Service
Privacy Policy
Contact: info@tinkutara.com