Let α≠1 and α^(13) =1. If a=α+α^3 +α^4 +α^(−4) +α^(−3) +
α^(−1) and b=α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−2) then the
quadratic equation whose roots are a and b is
(A) x^2 +x+3=0 (B) x^2 +x+4=0
(C) x^2 +x−3=0 (D) x^2 +x−4=0
If α and β are roots of the equation 2x^2 +ax+b=0,
then one of the roots of the equation 2(αx+β)^2 +
a(αx+β)+b=0 is
(A) 0 (B) ((α+2b)/α^2 )
(C) ((aα+b)/(2α^2 )) (D) ((aα−2b)/(2α^2 ))
ab=c
let (a−p)(b−q)=0
⇒ c−(aq+bp)+pq=0
q=((bp−c)/(p−a))
say 4×2=8
(4−3)(2−((6−8)/(−1)))=1×0=0
And if q=b
p=((ab−c)/(2b))=0
And if p+q=c
(p−a)(c−p)=bp−c
p^2 −(a+c−b)p+c(1−a)=0
2p=(a+c−b)±(√((a+c−b)^2 −4c(1−a)))
________________________