βnβ₯2, u_n =Ξ _(k=2) ^n cos ((Ο/2^k )) et v_n =u_n sin ((Ο/2^n ))
convergence, nature, sens of variations and adjantes?
u_n and v_n
help me please
If z=cos ΞΈ+i sin ΞΈ, prove that
cos^6 ΞΈ=(1/(32))(cos 6ΞΈ+6cos 4ΞΈ+15cos 2ΞΈ+10).
Hence or otherwise, find the value of
β«_0 ^( a) (β((a^2 βx^2 )^5 )) dx.
βtβ₯β1,F(t)=(2/Ο)β«_0 ^(Ο/2) (β(1+tcos^2 Ο))dΟ
1) Show that βtβ€β1 F(t)=(β(1+t))F(β(1/(1+t)))
2) show that if 0β€t_1 ,
0β€F(t_2 )βF(t_1 )β€((t_2 βt_1 )/4)