I(t,s)=β«_0 ^β x^(βt) (1+x)^(βs) dx=((Ξ(1βt)Ξ(s+tβ1))/(Ξ(s)))
I(t,s)=β«_0 ^β x^(βt) (1+x)^(βs) dx
=β«_0 ^β x^(βt) (1+x)^(mβs) (1+x)^(βm) dx
=β«_0 ^β x^(βt) e^((mβs)ln(1+x)) (1+x)^(βm) dx
=Ξ£_(n=0) ^β (((mβs)^n )/(n!))β«_0 ^β ((ln^n (1+x))/(x^t (1+x)^m ))dx
=2Ξ£_(n=0) ^β (((mβs)^n )/(n!))β«_0 ^β ((ln^n (1+x^2 ))/((1+x^2 )^m ))dx (t=(1/2))
If i want to calculate β«_0 ^β ((ln^n (1+x^2 ))/((1+x^2 )^m ))
how to expand β ((Ξ(1βt)Ξ(s+tβ1))/(Ξ(s))) βinto summation?
|