Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 716

Question Number 144618    Answers: 0   Comments: 1

Question Number 144614    Answers: 2   Comments: 0

^ Given that x = tan 23°, find the value of cos 16° in terms of x._

$$\overset{} {\:}\mathrm{Given}\:\mathrm{that}\:{x}\:=\:\mathrm{tan}\:\mathrm{23}°,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\:\mathrm{cos}\:\mathrm{16}°\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{x}\underset{} {.} \\ $$

Question Number 144609    Answers: 1   Comments: 0

How many digits doest the number 2021^(2022) have.?

$${How}\:{many}\:{digits}\:{doest}\:{the}\:{number} \\ $$$$\mathrm{2021}^{\mathrm{2022}} \:\:{have}.? \\ $$

Question Number 144608    Answers: 1   Comments: 0

find all aplication f in R→R f∈C^2 ∀x∈R. f′′(x)+f(−x)=x

$${find}\:{all}\:{aplication}\:{f}\:{in}\:\mathbb{R}\rightarrow\mathbb{R}\:\:{f}\in{C}^{\mathrm{2}} \\ $$$$\forall{x}\in\mathbb{R}.\:\:{f}''\left({x}\right)+{f}\left(−{x}\right)={x} \\ $$

Question Number 144607    Answers: 1   Comments: 0

Question Number 144603    Answers: 1   Comments: 0

Let a,b,c > 0 and (a+b)(b+c) = 4. Prove that (2a+b)(a+b)+(b+2c)(b+c) ≥ 8+(1/2)(a+2b+c)(c+a) Determine when equality holds.

$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}{a}+{b}\right)\left({a}+{b}\right)+\left({b}+\mathrm{2}{c}\right)\left({b}+{c}\right)\:\geqslant\:\mathrm{8}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}+\mathrm{2}{b}+{c}\right)\left({c}+{a}\right)\:\:\:\:\:\:\: \\ $$$$\mathrm{Determine}\:\mathrm{when}\:\mathrm{equality}\:\mathrm{holds}.\:\:\: \\ $$

Question Number 144602    Answers: 1   Comments: 0

Question Number 144600    Answers: 1   Comments: 0

if x,y,z>0 ; xy+yz+zx=1 prove that: xyz + (((1+x^3 )(1+y^3 )(1+z^3 )))^(1/3) ≥ 1

$${if}\:{x},{y},{z}>\mathrm{0}\:;\:{xy}+{yz}+{zx}=\mathrm{1}\:{prove}\:{that}: \\ $$$${xyz}\:+\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{y}^{\mathrm{3}} \right)\left(\mathrm{1}+{z}^{\mathrm{3}} \right)}\:\geqslant\:\mathrm{1} \\ $$

Question Number 144597    Answers: 2   Comments: 0

let ϕ(x)=(1/(3+cosx)) developp f at fourier serie

$$\mathrm{let}\:\varphi\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{cosx}} \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$

Question Number 144589    Answers: 1   Comments: 0

Find the value of Σ_(k=1) ^(90) sin k°+Σ_(k=1) ^(90) cos (90°+k°)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{90}} {\sum}}\mathrm{sin}\:{k}°+\underset{{k}=\mathrm{1}} {\overset{\mathrm{90}} {\sum}}\mathrm{cos}\:\left(\mathrm{90}°+{k}°\right) \\ $$

Question Number 144584    Answers: 0   Comments: 0

b. An experiment consists of flipping an unbiased coin and flipping again if a head occuors and yet again if a second bead occours , list the elements of the sample space . find the probability of exactly two tosses. c. if then prove that probability that X occours but not Y = probability that X occours − probabulity that Y occours CLO−1.

$$\mathrm{b}.\:\mathrm{An}\:\mathrm{experiment}\:\mathrm{consists}\:\mathrm{of}\:\mathrm{flipping}\:\mathrm{an}\:\mathrm{unbiased}\:\mathrm{coin} \\ $$$$\mathrm{and}\:\mathrm{flipping}\:\mathrm{again}\:\mathrm{if}\:\mathrm{a}\:\mathrm{head}\:\mathrm{occuors}\:\mathrm{and}\:\mathrm{yet} \\ $$$$\mathrm{again}\:\mathrm{if}\:\mathrm{a}\:\mathrm{second}\:\mathrm{bead}\:\mathrm{occours}\:,\:\mathrm{list}\:\mathrm{the}\:\mathrm{elements} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sample}\:\mathrm{space}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{of}\:\mathrm{exactly}\:\mathrm{two}\:\mathrm{tosses}. \\ $$$$\mathrm{c}.\:\mathrm{if}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{X}\:\:\mathrm{occours}\:\mathrm{but} \\ $$$$\mathrm{not}\:\mathrm{Y}\:=\:\mathrm{probability}\:\mathrm{that}\:\mathrm{X}\:\mathrm{occours}\:−\:\mathrm{probabulity}\:\mathrm{that}\:\mathrm{Y}\:\mathrm{occours} \\ $$$$\mathrm{CLO}−\mathrm{1}.\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 144582    Answers: 0   Comments: 0

Q. 1. throw two dice list, the elements of the sample space of the experement. let A be the event that the sum of the fa4es is odd and B be tbe event that at least one occurs. find the subset of the sample space in which i. event A and B occurs togather. ii. event A occurs or event B occurs. iii. event A occours but not B.

$$\mathrm{Q}.\:\mathrm{1}.\:\mathrm{throw}\:\mathrm{two}\:\mathrm{dice}\:\:\mathrm{list},\:\mathrm{the}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sample}\:\mathrm{space} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{experement}.\:\mathrm{let}\:\mathrm{A}\:\mathrm{be}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{fa4es}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{B}\:\mathrm{be}\:\mathrm{tbe}\:\mathrm{event}\:\mathrm{that}\:\mathrm{at}\:\mathrm{least}\: \\ $$$$\mathrm{one}\:\mathrm{occurs}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sample}\:\mathrm{space} \\ $$$$\mathrm{in}\:\mathrm{which}\: \\ $$$$\mathrm{i}.\:\mathrm{event}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{occurs}\:\mathrm{togather}. \\ $$$$\mathrm{ii}.\:\mathrm{event}\:\mathrm{A}\:\mathrm{occurs}\:\mathrm{or}\:\mathrm{event}\:\mathrm{B}\:\mathrm{occurs}. \\ $$$$\mathrm{iii}.\:\mathrm{event}\:\mathrm{A}\:\mathrm{occours}\:\mathrm{but}\:\mathrm{not}\:\mathrm{B}. \\ $$

Question Number 144579    Answers: 2   Comments: 1

Question Number 144679    Answers: 0   Comments: 2

Question Number 144564    Answers: 1   Comments: 1

Question Number 144563    Answers: 2   Comments: 0

log_4 (x) = log(y) = log_(25) (x+y) Find (x/y) = ?

$$\boldsymbol{{log}}_{\mathrm{4}} \left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{log}}\left(\boldsymbol{{y}}\right)\:=\:\boldsymbol{{log}}_{\mathrm{25}} \left(\boldsymbol{{x}}+\boldsymbol{{y}}\right) \\ $$$${Find}\:\:\frac{{x}}{{y}}\:=\:? \\ $$

Question Number 144558    Answers: 3   Comments: 0

lim_(x→−∞) (((2x−(√(3x^2 +3x)))/(x−1)))=?

$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\mathrm{2x}−\sqrt{\mathrm{3x}^{\mathrm{2}} +\mathrm{3x}}}{\mathrm{x}−\mathrm{1}}\right)=? \\ $$

Question Number 144556    Answers: 2   Comments: 0

lim_(x→0) (((1−cos x(√(cos 2x)))/x^2 )) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{x}^{\mathrm{2}} }\right)\:=? \\ $$

Question Number 144554    Answers: 1   Comments: 0

Question Number 144553    Answers: 1   Comments: 0

Solve for natural numbers: (1^4 /z) + (2^4 /(z+1)) + (3^4 /(z+2)) + ... + ((10^4 )/(z+9)) = 3025

$${Solve}\:{for}\:{natural}\:{numbers}: \\ $$$$\frac{\mathrm{1}^{\mathrm{4}} }{\boldsymbol{{z}}}\:+\:\frac{\mathrm{2}^{\mathrm{4}} }{\boldsymbol{{z}}+\mathrm{1}}\:+\:\frac{\mathrm{3}^{\mathrm{4}} }{\boldsymbol{{z}}+\mathrm{2}}\:+\:...\:+\:\frac{\mathrm{10}^{\mathrm{4}} }{\boldsymbol{{z}}+\mathrm{9}}\:=\:\mathrm{3025} \\ $$

Question Number 144550    Answers: 0   Comments: 0

Question Number 144549    Answers: 1   Comments: 0

Question Number 144544    Answers: 2   Comments: 1

lim_(x→(π/2)) (cosx)^(cotx)

$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \left({cosx}\right)^{{cotx}} \\ $$

Question Number 144539    Answers: 1   Comments: 0

Let 0°<θ<45°, find the value of sin^2 (45°+θ)+sin^2 (45°−θ)

$$\mathrm{Let}\:\mathrm{0}°<\theta<\mathrm{45}°,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{45}°+\theta\right)+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{45}°−\theta\right) \\ $$

Question Number 144537    Answers: 2   Comments: 0

Let a,b>0 and a+b = 2. Prove that (1) ((a^3 +b^3 )/2)−2(1−ab) ≥ 1 (2) ((a^2 +b^2 )/2)−2(1−ab) ≤ 1

$$\mathrm{Let}\:{a},{b}>\mathrm{0}\:\mathrm{and}\:{a}+{b}\:=\:\mathrm{2}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\geqslant\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\leqslant\:\mathrm{1} \\ $$

Question Number 144534    Answers: 2   Comments: 0

Find the shortest distance from the origin to the hyperbola x^2 +8xy+7y^2 =225 ,z=0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{from}\: \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{hyperbola}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225}\:,\mathrm{z}=\mathrm{0}\: \\ $$

  Pg 711      Pg 712      Pg 713      Pg 714      Pg 715      Pg 716      Pg 717      Pg 718      Pg 719      Pg 720   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com