Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 715

Question Number 138570    Answers: 1   Comments: 0

∫_( (√2)) ^2 (dx/(x^2 (√((x^2 −1)^3 )))) =?

$$\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}} {\int}}\:\frac{{dx}}{{x}^{\mathrm{2}} \:\sqrt{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} }}\:=?\: \\ $$

Question Number 138569    Answers: 1   Comments: 0

Question Number 138564    Answers: 1   Comments: 0

y∙y′=0.5∙(1+y∙c_1 )^2 ∙c_2 +0.5 y=?

$${y}\centerdot{y}'=\mathrm{0}.\mathrm{5}\centerdot\left(\mathrm{1}+{y}\centerdot{c}_{\mathrm{1}} \right)^{\mathrm{2}} \centerdot{c}_{\mathrm{2}} +\mathrm{0}.\mathrm{5} \\ $$$$ \\ $$$${y}=? \\ $$

Question Number 138560    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (−1)^n (ln (n+1)−ln (n))=?

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{ln}\:\left({n}+\mathrm{1}\right)−\mathrm{ln}\:\left({n}\right)\right)=? \\ $$

Question Number 138554    Answers: 1   Comments: 0

Question Number 138552    Answers: 0   Comments: 0

...nice mathemayics ... 𝛗=∫_0 ^( ∞) ((sin(tan(x)))/x)dx=(π/2)(1−(1/e)) .......

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:\:\:\:\:\:{mathemayics}\:... \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:....... \\ $$

Question Number 138548    Answers: 1   Comments: 0

Question Number 138546    Answers: 1   Comments: 0

Question Number 138539    Answers: 0   Comments: 0

find the intigral of complex number I_j =∫_(γj) xdz if j=1,2 and Y_1 he is a circle ∣z∣=R

$${find}\:{the}\:{intigral}\:{of}\:{complex}\:{number} \\ $$$$ \\ $$$${I}_{{j}} =\int_{\gamma{j}} {xdz}\:\:\:{if}\:{j}=\mathrm{1},\mathrm{2}\:{and}\:{Y}_{\mathrm{1}} {he}\:{is}\:{a}\:{circle} \\ $$$$ \\ $$$$\mid{z}\mid={R} \\ $$

Question Number 138536    Answers: 0   Comments: 1

This app is now free as several users do not have cards and are not able to upgrade. Manual entry in backend system had put lot of overhead. Hence we have decide to make this app free. We issued several refunds for users who had bought. However Google playstore is not letting us issue more refunds as some security check has detected too many refunds issued and blocked further refunds. Please send us email with your order id and we will those refunds on priority as soon as Google playstore allows us.

$$\mathrm{This}\:\mathrm{app}\:\mathrm{is}\:\mathrm{now}\:\mathrm{free}\:\mathrm{as}\:\mathrm{several}\:\mathrm{users} \\ $$$$\mathrm{do}\:\mathrm{not}\:\mathrm{have}\:\mathrm{cards}\:\mathrm{and}\:\mathrm{are}\:\mathrm{not}\:\mathrm{able} \\ $$$$\mathrm{to}\:\mathrm{upgrade}.\:\mathrm{Manual}\:\mathrm{entry}\:\mathrm{in}\:\mathrm{backend} \\ $$$$\mathrm{system}\:\mathrm{had}\:\mathrm{put}\:\mathrm{lot}\:\mathrm{of}\:\mathrm{overhead}. \\ $$$$\mathrm{Hence}\:\mathrm{we}\:\mathrm{have}\:\mathrm{decide}\:\mathrm{to}\:\mathrm{make}\:\mathrm{this} \\ $$$$\mathrm{app}\:\mathrm{free}. \\ $$$$\mathrm{We}\:\mathrm{issued}\:\mathrm{several}\:\mathrm{refunds}\:\mathrm{for}\:\mathrm{users} \\ $$$$\mathrm{who}\:\mathrm{had}\:\mathrm{bought}.\:\mathrm{However}\:\mathrm{Google} \\ $$$$\mathrm{playstore}\:\mathrm{is}\:\mathrm{not}\:\mathrm{letting}\:\mathrm{us}\:\mathrm{issue} \\ $$$$\mathrm{more}\:\mathrm{refunds}\:\mathrm{as}\:\mathrm{some}\:\mathrm{security}\:\mathrm{check} \\ $$$$\mathrm{has}\:\mathrm{detected}\:\mathrm{too}\:\mathrm{many}\:\mathrm{refunds}\:\mathrm{issued} \\ $$$$\mathrm{and}\:\mathrm{blocked}\:\mathrm{further}\:\mathrm{refunds}. \\ $$$$\mathrm{Please}\:\mathrm{send}\:\mathrm{us}\:\mathrm{email}\:\mathrm{with}\:\mathrm{your} \\ $$$$\mathrm{order}\:\mathrm{id}\:\mathrm{and}\:\mathrm{we}\:\mathrm{will}\:\mathrm{those}\:\mathrm{refunds} \\ $$$$\mathrm{on}\:\mathrm{priority}\:\mathrm{as}\:\mathrm{soon}\:\mathrm{as}\:\mathrm{Google}\:\mathrm{playstore} \\ $$$$\mathrm{allows}\:\mathrm{us}. \\ $$

Question Number 138533    Answers: 0   Comments: 2

∫_0 ^5 (1+x)δ(x^2 −4)dx=?

$$\int_{\mathrm{0}} ^{\mathrm{5}} \left(\mathrm{1}+{x}\right)\delta\left({x}^{\mathrm{2}} −\mathrm{4}\right){dx}=? \\ $$

Question Number 138532    Answers: 2   Comments: 0

x+(√y)=7 (√x)+y=11 faind x=? and y=?

$${x}+\sqrt{{y}}=\mathrm{7} \\ $$$$\sqrt{{x}}+{y}=\mathrm{11} \\ $$$${faind}\:\:{x}=?\:\:{and}\:\:{y}=? \\ $$

Question Number 138524    Answers: 3   Comments: 0

.......advanced ... .... ... calculus..... I:=∫_((−π)/2) ^( (π/2)) sin^2 (tan(x))dx=^(???) (π/e)sinh(1)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:.......{advanced}\:...\:....\:...\:{calculus}..... \\ $$$$\:\:\:\boldsymbol{\mathrm{I}}:=\int_{\frac{−\pi}{\mathrm{2}}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({tan}\left({x}\right)\right){dx}\overset{???} {=}\frac{\pi}{{e}}{sinh}\left(\mathrm{1}\right) \\ $$

Question Number 138521    Answers: 2   Comments: 0

.......Advanced ... ... ... calculus........ Ω=∫_0 ^( ∞) ((x^2 e^x )/((1+e^x )^3 )) dx =? .....∗∗∗∗∗∗∗∗.....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......{Advanced}\:...\:...\:...\:{calculus}........ \\ $$$$\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\mathrm{2}} {e}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{3}} }\:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:.....\ast\ast\ast\ast\ast\ast\ast\ast..... \\ $$

Question Number 138519    Answers: 0   Comments: 2

Question Number 138516    Answers: 0   Comments: 0

...........calculus ... ... ... (I)......... 𝛗=∫_0 ^( ∞) ((xe^x )/((1+e^x )^3 ))dx =? =(1/2)∫_0 ^( ∞) x.d(((−1)/((1+e^x )^2 )) ) =(1/2)[((−x)/((1+e^x )))]_0 ^∞ +(1/2)∫_0 ^( ∞) (dx/((1+e^x )^2 )) =(1/2)∫_0 ^( ∞) (1/(1+e^x ))dx−(1/2)∫_0 ^( ∞) (e^x /((1+e^x )^2 ))dx =−(1/2)[ln(1+e^(−x) )]_0 ^∞ −(1/2)∫_0 ^( ∞) d(((−1)/(1+e^x ))) =(1/2)ln(2)−(1/2)[((−1)/(1+e^x ))]_0 ^∞ =−(1/2)+(1/2)ln(2) ...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...........{calculus}\:...\:...\:...\:\left(\mathrm{I}\right)......... \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xe}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{3}} }{dx}\:=? \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {x}.{d}\left(\frac{−\mathrm{1}}{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{−{x}}{\left(\mathrm{1}+{e}^{{x}} \right)}\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{dx}}{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\mathrm{1}+{e}^{{x}} }{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} }{dx} \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{e}^{−{x}} \right)\right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {d}\left(\frac{−\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{−\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\right]_{\mathrm{0}} ^{\infty} =−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:... \\ $$

Question Number 138484    Answers: 0   Comments: 2

Question Number 138485    Answers: 2   Comments: 1

Question Number 138477    Answers: 1   Comments: 0

Question Number 138474    Answers: 0   Comments: 0

hi ! find x such that : ∀ y ∈ [0,1], x ≥ y ⇒ x ≥ 2y.

$$\boldsymbol{\mathrm{hi}}\:!\: \\ $$$$\boldsymbol{\mathrm{find}}\:{x}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}\::\:\forall\:{y}\:\in\:\left[\mathrm{0},\mathrm{1}\right],\:{x}\:\geqslant\:{y}\:\Rightarrow\:{x}\:\geqslant\:\mathrm{2}{y}. \\ $$

Question Number 138473    Answers: 1   Comments: 0

hi ! calculate : lim_(x→∞) [((ln(x+1))/(ln (x)))]^(x ln (x)) .

$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{calculate}}\::\:\underset{{x}\rightarrow\infty} {{lim}}\:\left[\frac{{ln}\left({x}+\mathrm{1}\right)}{{ln}\:\left({x}\right)}\right]^{{x}\:{ln}\:\left({x}\right)} . \\ $$

Question Number 138460    Answers: 0   Comments: 0

Question Number 138456    Answers: 1   Comments: 6

Question Number 138513    Answers: 1   Comments: 0

Question Number 138512    Answers: 0   Comments: 0

Question Number 138511    Answers: 0   Comments: 1

  Pg 710      Pg 711      Pg 712      Pg 713      Pg 714      Pg 715      Pg 716      Pg 717      Pg 718      Pg 719   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com