Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 715
Question Number 141218 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:^{\mathrm{4}} \sqrt{\mathrm{tanx}}\mathrm{log}\left(\mathrm{tanx}\right)\mathrm{dx}\:\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{log}\left(\mathrm{tanx}\right)}{\left(^{\mathrm{3}} \sqrt{\mathrm{tanx}}\right)}\mathrm{dx} \\ $$
Question Number 141198 Answers: 0 Comments: 2
Question Number 141197 Answers: 1 Comments: 0
$${Write}\:{the}\:{next}\:{three}\:{terms}\:\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{7}},\:\frac{\mathrm{8}}{\mathrm{3}},\:\_\_\_,\:\_\_\_,\:\_\_\_,\:... \\ $$
Question Number 141274 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:.......\:{elementary}\:.....{calculus}........ \\ $$$$\:\:\:\:\:{if}\:\:\:{f}\left({x}\right):=\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}} +{x}−\mathrm{2}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{3}\right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)}}{\left(\mathrm{2}+{cos}\left(\pi{x}\right)\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:{then}\:\:\:{f}\:'\left(\mathrm{0}\:\right)=?\:\:\&\:{f}\:'\left(\mathrm{1}\right)=? \\ $$$$ \\ $$
Question Number 141193 Answers: 1 Comments: 0
$${A}=\begin{bmatrix}{\mathrm{2}\:\:}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{3}}&{−\mathrm{1}}&{\mathrm{2}}\\{−\mathrm{2}}&{\mathrm{1}}&{\mathrm{2}}\end{bmatrix}{find}\:{the}\:{inverse}\:{of}\:\:{this}\:{matrix} \\ $$$$ \\ $$
Question Number 141191 Answers: 1 Comments: 0
$${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{generated} \\ $$$${when}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{y}={x} \\ $$$${y}={x}+\mathrm{2},\:{x}=\mathrm{2}\:{and}\:{x}=\mathrm{4}\:{revolved}\:{about}\:{the}\:{x}-{axis} \\ $$
Question Number 141189 Answers: 0 Comments: 3
$${find}\:{the}\:{area}\:{of}\:{the}\:{shaded}\:{region} \\ $$$${shown}\:{below}\:{which}\:{is}\:{boinded}\:{by}\:{to}\:{functions}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \:\:{g}\left({x}\right)=\mathrm{2}−{x}\:{and}\:{the}\:{x}-{axis} \\ $$$$ \\ $$
Question Number 141186 Answers: 1 Comments: 4
Question Number 141171 Answers: 1 Comments: 6
Question Number 141167 Answers: 0 Comments: 0
Question Number 141164 Answers: 2 Comments: 1
$$\:\:\:\:{Find}\:{maximum}\:{value}\: \\ $$$$\:\:\:{of}\:{the}\:{product}\:{xy}\left(\mathrm{72}−\mathrm{3}{x}−\mathrm{4}{y}\right) \\ $$$$\:\:\:\:{for}\:{positive}\:{value}\:{of}\:{x}\:\&\:{y}. \\ $$
Question Number 141163 Answers: 1 Comments: 0
Question Number 141153 Answers: 2 Comments: 0
Question Number 141152 Answers: 2 Comments: 0
$$\begin{pmatrix}{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{4}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{{x}'}\\{{y}'}\end{pmatrix}\:\mathrm{and}\:\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\begin{pmatrix}{{x}'}\\{{y}'}\end{pmatrix}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mathrm{are}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\mathrm{values}\:\mathrm{of}\:{x},{y},{x}',{y}', \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a},{b},{c},{d}. \\ $$
Question Number 141149 Answers: 3 Comments: 0
$${lim}_{{x}\rightarrow\infty} \underset{{i}=\mathrm{0}} {\overset{{x}−\mathrm{1}} {\sum}}\frac{{x}}{\left({x}+{i}\right)} \\ $$
Question Number 141148 Answers: 0 Comments: 0
$$ \\ $$
Question Number 141150 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{concentration}\:\mathrm{of}\left[\mathrm{OH}^{−} \right]\: \\ $$$$\mathrm{in}\:\mathrm{0}.\mathrm{4M}\:\mathrm{NH}_{\mathrm{4}} \mathrm{OH}\:\mathrm{solution}\:\mathrm{having}\: \\ $$$$\mathrm{5}.\mathrm{35g}\:\mathrm{NH}_{\mathrm{4}} \mathrm{Cl}\:\mathrm{in}\:\mathrm{a}\:\mathrm{one}\left(\mathrm{1}\right)\:\mathrm{litre}\:\mathrm{solution}. \\ $$$$\left(\mathrm{k}_{\mathrm{b}} =\mathrm{1}.\mathrm{8}×\mathrm{10}^{−\mathrm{5}} ,\mathrm{N}=\mathrm{14},\mathrm{H}=\mathrm{1},\mathrm{Cl}=\mathrm{35}.\mathrm{5}\right) \\ $$$$ \\ $$
Question Number 141142 Answers: 0 Comments: 0
Question Number 141136 Answers: 2 Comments: 0
$$\:\:\:\:{Find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:\:\mathrm{5}{x}\:+\:\frac{\mathrm{16}}{{x}}\:+\:\mathrm{21}\:{over}\:{positive}\: \\ $$$$\:\:\:{value}\:{of}\:{x}\: \\ $$
Question Number 141135 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:{Find}\:{the}\:{minimum}\:{of}\: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{12}}{{x}}\:+\:\frac{\mathrm{18}}{{y}}\:+\:{xy}\:{for}\:{all}\: \\ $$$$\:\:\:\:\:\:{positive}\:{number}\:{x}\:\&\:{y}\:. \\ $$
Question Number 141134 Answers: 1 Comments: 0
$$\:\:\:\:\: \\ $$$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\Phi:=\underset{{m},{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }=\:\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$ \\ $$
Question Number 141133 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{I}}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\left({x}^{{n}} −\mathrm{1}\right)\left({x}−\mathrm{1}\right)}{{x}^{{n}+\mathrm{3}} −\mathrm{1}}{dx}=?? \\ $$$$ \\ $$
Question Number 141132 Answers: 1 Comments: 0
$$\:\:\: \\ $$$$\:...{mathematical}\:...{analysis}... \\ $$$$\:\:\:\:{prove}\:\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}^{{n}} } }\:\right)\:\overset{?} {=}\:\mathrm{2}\:\:\: \\ $$$$\:\:\:\:\:\:...... \\ $$
Question Number 141129 Answers: 1 Comments: 0
$${For}\:{what}\:{values}\:{of}\:\lambda\:{are}\:{the} \\ $$$${vectors}\:\lambda\hat {{i}}\:+\:\mathrm{2}\hat {{j}}\:+\:\hat {{k}}\:,\:\mathrm{3}\hat {{i}}\:+\mathrm{4}\hat {{j}}\:+\lambda\hat {{k}}\: \\ $$$$,\:\hat {{j}}\:+\:\hat {{k}}\:\:{coplanar}\: \\ $$
Question Number 141127 Answers: 1 Comments: 0
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\frac{{n}}{\left({n}+{i}\right)^{\mathrm{2}} }\:=?\: \\ $$
Question Number 141124 Answers: 2 Comments: 0
Pg 710 Pg 711 Pg 712 Pg 713 Pg 714 Pg 715 Pg 716 Pg 717 Pg 718 Pg 719
Terms of Service
Privacy Policy
Contact: info@tinkutara.com