Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 715

Question Number 141218    Answers: 3   Comments: 0

calculate I =∫_0 ^(π/2) ^4 (√(tanx))log(tanx)dx and J =∫_0 ^(π/2) ((log(tanx))/((^3 (√(tanx)))))dx

$$\mathrm{calculate}\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:^{\mathrm{4}} \sqrt{\mathrm{tanx}}\mathrm{log}\left(\mathrm{tanx}\right)\mathrm{dx}\:\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{log}\left(\mathrm{tanx}\right)}{\left(^{\mathrm{3}} \sqrt{\mathrm{tanx}}\right)}\mathrm{dx} \\ $$

Question Number 141198    Answers: 0   Comments: 2

Question Number 141197    Answers: 1   Comments: 0

Write the next three terms 1, (3/7), (8/3), ___, ___, ___, ...

$${Write}\:{the}\:{next}\:{three}\:{terms}\:\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{7}},\:\frac{\mathrm{8}}{\mathrm{3}},\:\_\_\_,\:\_\_\_,\:\_\_\_,\:... \\ $$

Question Number 141274    Answers: 1   Comments: 0

....... elementary .....calculus........ if f(x):=((((x^3 +x−2)(2x^2 +x−3)(1−x^3 )))^(1/3) /((2+cos(πx))^3 )) then f ′(0 )=? & f ′(1)=?

$$\:\:\:\:\:\:\:\:\:\:\:.......\:{elementary}\:.....{calculus}........ \\ $$$$\:\:\:\:\:{if}\:\:\:{f}\left({x}\right):=\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}} +{x}−\mathrm{2}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{3}\right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)}}{\left(\mathrm{2}+{cos}\left(\pi{x}\right)\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:{then}\:\:\:{f}\:'\left(\mathrm{0}\:\right)=?\:\:\&\:{f}\:'\left(\mathrm{1}\right)=? \\ $$$$ \\ $$

Question Number 141193    Answers: 1   Comments: 0

A= [((2 ),1,(−1)),((−3),(−1),2),((−2),1,2) ]find the inverse of this matrix

$${A}=\begin{bmatrix}{\mathrm{2}\:\:}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{3}}&{−\mathrm{1}}&{\mathrm{2}}\\{−\mathrm{2}}&{\mathrm{1}}&{\mathrm{2}}\end{bmatrix}{find}\:{the}\:{inverse}\:{of}\:\:{this}\:{matrix} \\ $$$$ \\ $$

Question Number 141191    Answers: 1   Comments: 0

find the volume of the solid generated when the region bounded by the y=x y=x+2, x=2 and x=4 revolved about the x-axis

$${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{generated} \\ $$$${when}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{y}={x} \\ $$$${y}={x}+\mathrm{2},\:{x}=\mathrm{2}\:{and}\:{x}=\mathrm{4}\:{revolved}\:{about}\:{the}\:{x}-{axis} \\ $$

Question Number 141189    Answers: 0   Comments: 3

find the area of the shaded region shown below which is boinded by to functions f(x)=x^2 g(x)=2−x and the x-axis

$${find}\:{the}\:{area}\:{of}\:{the}\:{shaded}\:{region} \\ $$$${shown}\:{below}\:{which}\:{is}\:{boinded}\:{by}\:{to}\:{functions}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \:\:{g}\left({x}\right)=\mathrm{2}−{x}\:{and}\:{the}\:{x}-{axis} \\ $$$$ \\ $$

Question Number 141186    Answers: 1   Comments: 4

Question Number 141171    Answers: 1   Comments: 6

Question Number 141167    Answers: 0   Comments: 0

Question Number 141164    Answers: 2   Comments: 1

Find maximum value of the product xy(72−3x−4y) for positive value of x & y.

$$\:\:\:\:{Find}\:{maximum}\:{value}\: \\ $$$$\:\:\:{of}\:{the}\:{product}\:{xy}\left(\mathrm{72}−\mathrm{3}{x}−\mathrm{4}{y}\right) \\ $$$$\:\:\:\:{for}\:{positive}\:{value}\:{of}\:{x}\:\&\:{y}. \\ $$

Question Number 141163    Answers: 1   Comments: 0

Question Number 141153    Answers: 2   Comments: 0

Question Number 141152    Answers: 2   Comments: 0

((3,5),(2,4) ) ((x),(y) )= (((x′)),((y′)) ) and ((a,b),(c,d) ) (((x′)),((y′)) )= ((x),(y) ) are true for any values of x,y,x′,y′, find the values of a,b,c,d.

$$\begin{pmatrix}{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{4}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{{x}'}\\{{y}'}\end{pmatrix}\:\mathrm{and}\:\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\begin{pmatrix}{{x}'}\\{{y}'}\end{pmatrix}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mathrm{are}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\mathrm{values}\:\mathrm{of}\:{x},{y},{x}',{y}', \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a},{b},{c},{d}. \\ $$

Question Number 141149    Answers: 3   Comments: 0

lim_(x→∞) Σ_(i=0) ^(x−1) (x/((x+i)))

$${lim}_{{x}\rightarrow\infty} \underset{{i}=\mathrm{0}} {\overset{{x}−\mathrm{1}} {\sum}}\frac{{x}}{\left({x}+{i}\right)} \\ $$

Question Number 141148    Answers: 0   Comments: 0

$$ \\ $$

Question Number 141150    Answers: 0   Comments: 0

Determine the concentration of[OH^− ] in 0.4M NH_4 OH solution having 5.35g NH_4 Cl in a one(1) litre solution. (k_b =1.8×10^(−5) ,N=14,H=1,Cl=35.5)

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{concentration}\:\mathrm{of}\left[\mathrm{OH}^{−} \right]\: \\ $$$$\mathrm{in}\:\mathrm{0}.\mathrm{4M}\:\mathrm{NH}_{\mathrm{4}} \mathrm{OH}\:\mathrm{solution}\:\mathrm{having}\: \\ $$$$\mathrm{5}.\mathrm{35g}\:\mathrm{NH}_{\mathrm{4}} \mathrm{Cl}\:\mathrm{in}\:\mathrm{a}\:\mathrm{one}\left(\mathrm{1}\right)\:\mathrm{litre}\:\mathrm{solution}. \\ $$$$\left(\mathrm{k}_{\mathrm{b}} =\mathrm{1}.\mathrm{8}×\mathrm{10}^{−\mathrm{5}} ,\mathrm{N}=\mathrm{14},\mathrm{H}=\mathrm{1},\mathrm{Cl}=\mathrm{35}.\mathrm{5}\right) \\ $$$$ \\ $$

Question Number 141142    Answers: 0   Comments: 0

Question Number 141136    Answers: 2   Comments: 0

Find the smallest value 5x + ((16)/x) + 21 over positive value of x

$$\:\:\:\:{Find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:\:\mathrm{5}{x}\:+\:\frac{\mathrm{16}}{{x}}\:+\:\mathrm{21}\:{over}\:{positive}\: \\ $$$$\:\:\:{value}\:{of}\:{x}\: \\ $$

Question Number 141135    Answers: 3   Comments: 0

Find the minimum of ((12)/x) + ((18)/y) + xy for all positive number x & y .

$$\:\:\:\:\:\:\:{Find}\:{the}\:{minimum}\:{of}\: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{12}}{{x}}\:+\:\frac{\mathrm{18}}{{y}}\:+\:{xy}\:{for}\:{all}\: \\ $$$$\:\:\:\:\:\:{positive}\:{number}\:{x}\:\&\:{y}\:. \\ $$

Question Number 141134    Answers: 1   Comments: 0

prove that:: Φ:=Σ_(m,n=1) ^∞ (((−1)^(n−1) )/(m^2 +n^2 ))= (π^2 /(24))+((πln(2))/8)

$$\:\:\:\:\: \\ $$$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\Phi:=\underset{{m},{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }=\:\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$ \\ $$

Question Number 141133    Answers: 1   Comments: 0

I:=∫_0 ^( ∞) (((x^n −1)(x−1))/(x^(n+3) −1))dx=??

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{I}}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\left({x}^{{n}} −\mathrm{1}\right)\left({x}−\mathrm{1}\right)}{{x}^{{n}+\mathrm{3}} −\mathrm{1}}{dx}=?? \\ $$$$ \\ $$

Question Number 141132    Answers: 1   Comments: 0

...mathematical ...analysis... prove that: Π_(n=0) ^∞ (1+(1/2^2^n ) ) =^? 2 ......

$$\:\:\: \\ $$$$\:...{mathematical}\:...{analysis}... \\ $$$$\:\:\:\:{prove}\:\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}^{{n}} } }\:\right)\:\overset{?} {=}\:\mathrm{2}\:\:\: \\ $$$$\:\:\:\:\:\:...... \\ $$

Question Number 141129    Answers: 1   Comments: 0

For what values of λ are the vectors λi^ + 2j^ + k^ , 3i^ +4j^ +λk^ , j^ + k^ coplanar

$${For}\:{what}\:{values}\:{of}\:\lambda\:{are}\:{the} \\ $$$${vectors}\:\lambda\hat {{i}}\:+\:\mathrm{2}\hat {{j}}\:+\:\hat {{k}}\:,\:\mathrm{3}\hat {{i}}\:+\mathrm{4}\hat {{j}}\:+\lambda\hat {{k}}\: \\ $$$$,\:\hat {{j}}\:+\:\hat {{k}}\:\:{coplanar}\: \\ $$

Question Number 141127    Answers: 1   Comments: 0

lim_(n→∞) Σ_(i=0) ^(n−1) (n/((n+i)^2 )) =?

$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\frac{{n}}{\left({n}+{i}\right)^{\mathrm{2}} }\:=?\: \\ $$

Question Number 141124    Answers: 2   Comments: 0

  Pg 710      Pg 711      Pg 712      Pg 713      Pg 714      Pg 715      Pg 716      Pg 717      Pg 718      Pg 719   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com